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Figure 1. By distilling knowledge from dynamic NeRFs fitted to offline video data at scale [16,44], we present a method to train category-
specific real-time video shape predictors, which output temporally-consistent viewpoint, articulation, and appearance given casual input
videos. Our method replaces expensive test-time optimization with a single forward pass, allowing real-time inference on a RTX-3090
GPU. Compared to existing model-based methods for reconstructing humans and animals in motion [13, 18, 31], our method does not
require pre-defined 3D templates or ground-truth 3D data to train. (Project page: https://jefftan969.github.io/dasr).

Abstract

We present a method for reconstructing articulated 3D
models from videos in real-time, without test-time optimiza-
tion or manual 3D supervision at training time. Prior
work often relies on pre-built deformable models (e.g.
SMAL/SMPL), or slow per-scene optimization through dif-
ferentiable rendering (e.g. dynamic NeRFs). Such methods
fail to support arbitrary object categories, or are unsuit-
able for real-time applications. To address the challenge
of collecting large-scale 3D training data for arbitrary de-
formable object categories, our key insight is to use off-
the-shelf video-based dynamic NeRFs as 3D supervision to
train a fast feed-forward network, turning 3D shape and
motion prediction into a supervised distillation task. Our
temporal-aware network uses articulated bones and blend
skinning to represent arbitrary deformations, and is self-
supervised on video datasets without requiring 3D shapes
or viewpoints as input. Through distillation, our network
learns to 3D-reconstruct unseen articulated objects at in-
teractive frame rates. Our method yields higher-fidelity 3D
reconstructions than prior real-time methods for animals,
with the ability to render realistic images at novel view-
points and poses.

1. Introduction

We are interested in building high-quality animatable
models of articulated 3D objects from videos in real time.

One promising application is virtual and augmented real-
ity, where the goal is to create high-fidelity 3D experiences
from images and videos captured live by users. For rigid
scenes, structure from motion (SfM) and neural rendering
can be used to build accurate 3D cities and landmarks from
Internet image collections [1, 20, 33]. For articulated ob-
jects such as friends and pets, many works parameterize the
range of motions using category-specific templates such as
SMPL [18] for humans and SMAL [4] for quadruped ani-
mals. Although these methods can be trained on large-scale
video datasets, they rely on parametric body template mod-
els built from extensive real-world 3D scans: these body
models are not easy to generate for diverse categories in the
wild such as clothed humans or pets with distinct morpholo-
gies, which are often the focus of user content.

Inspired by the breakthrough success of neural radiance
fields [21], many works reconstruct arbitrary articulated ob-
jects in an analysis-by-synthesis framework [16, 27, 28, 30,
36, 44] by defining time-dependent 3D warping fields and
establishing long-range correspondences on top of canon-
ical shape and appearance models. These methods out-
put high-quality reconstructions of arbitrary objects without
3D data or pre-defined templates, but the output represen-
tations are scene-specific and often require hours to com-
pute from scratch on unseen videos - an unacceptable cost
for real-time VR/AR tasks. We are thus interested in dy-
namic 3D reconstruction algorithms that achieve the best
of both worlds: the speed of template-based models and
the quality and generalization ability of dynamic NeRFs.
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To achieve this, our key insight is remarkably simple: we
train category-specific feed-forward 3D predictors at scale
by self-supervising them with dynamic NeRF “teachers” fit-
ted to offline video data.

By leveraging scene-fitted dynamic NeRFs for 3D su-
pervision at scale, our method learns a feed-forward pre-
dictor for appearance, 3D shape, and articulations of non-
rigid objects from videos. Our learned 3D models use lin-
ear blend skinning to express articulations, allowing it to
be animated by manipulating bone transformations. We ad-
dress three key challenges in our work: (1) how to super-
vise feed-forward models with internal representations of
dynamic NeRFs, (2) how to produce temporally consistent
predictions of pose, articulation, and appearance, and (3)
how to build efficient systems for real-time reconstruction.

2. Related Work
Template-Based Dynamic Reconstruction A large body
of work uses parametric body models [18,48,49] to recover
3D shapes and motions for human and animal reconstruc-
tion, given a single image as input [2,3,13,32]. These mod-
els are built from registered 3D scans of real humans or toy
animals, and achieve great success in reconstructing cate-
gories for which large volumes of ground-truth 3D data are
available (especially human reconstruction). However, it is
challenging to apply these methods to arbitrary categories
with diverse morphologies, especially where 3D data is lim-
ited. Our work aims to generalize these approaches to arbi-
trary articulated object categories without requiring ground-
truth 3D data or pre-registered 3D scans during training.
Template-Free Dynamic Reconstruction Several meth-
ods build deformable 3D models without templates by re-
covering shapes and poses from internet-scale 2D image
collections, using weak supervision such as keypoints and
object silhouettes from off-the-shelf models or human an-
notators [6, 10, 14, 34]. As it is inherently ambiguous to
reconstruct 3D outputs from the sparse and limited 2D ob-
servations available in images, these methods must lever-
age strong data priors and apply heavily regularization to
ensure reasonable outputs, often resulting in blurry or over-
smoothed shapes and textures. Leveraging the temporal
context available in videos can help these methods learn
temporally consistent results [38], however the output qual-
ity is still low perhaps due to over-regularization.
Neural Radiance Fields Neural fields are a powerful
method for 3D reconstruction using 2D image supervision,
achieving state-of-the-art quality on both static and dynamic
scenes. Although historically limited to rigid scenes with
known cameras [20, 21, 36], recent works extend NeRF
to dynamic scenes by deforming view-space points to a
canonical space over time, using time-dependent 3D warp-
ing fields and dense correspondences [5, 16, 17, 27, 30].
Dynamic NeRFs are able to learn high-fidelity animatable

3D models from several casual videos capturing the same
object instance [42–44], by leveraging the temporal con-
text available in videos. Unfortunately, dynamic NeRFs
are slow and require optimization from scratch on unseen
videos at test-time. Although architectures exist to speed up
static NeRFs using explicit voxel grids [46] or hash-table
caching [22], more work is required to speed up dynamic
NeRFs by similar factors due to the additional overheads
of time-dependent warping and correspondence matching.
Our aim is to leverage the high-quality outputs of dynamic
NeRFs to supervise a fast and lightweight architecture for
articulated 3D reconstruction.

3. Method
In order to train category-specific feed-forward 3D pre-

dictors from dynamic NeRF teacher models, we combine
a single-frame image encoder that regresses viewpoint,
shape, and appearance from images, and a temporal encoder
that reasons about these predictions over time. In this sec-
tion, we describe the problem setup, scene representation,
network architecture, training procedure, and losses.

3.1. Problem Setup

Given an input video centered on an articulated object,
we train a feed-forward network to predict the viewpoint,
articulations, and appearance, which are used to render
a posed and textured object model. Our network is su-
pervised on the pseudo-ground-truth outputs of a dynamic
NeRF teacher, which builds animatable 3D models from
casually collected videos including shape, appearance, and
time-varying articulations. Our particular implementation
uses BANMo [44] as the teacher, as it has public code and
yields good results on humans and quadrupeds. Similar to
the teacher, our method requires no pre-defined shape tem-
plates, registered cameras, or 3D ground truths.

Fig. 2 summarizes our approach and how it differs from
the teacher model. Sec. 3.2 and Sec. 3.3 introduce our ob-
ject and motion representation, while Sec. 3.4 discusses
the underlying feed-forward neural architecture. Finally,
Sec. 3.5 describes the training losses used to supervise our
models. In contrast to our teacher [44] which uses volume
rendering (which can be slow), we render textured meshes
to enable efficient rasterization.

3.2. Object Representation

Category-level shape. We model articulated objects as a
canonical rest shape that is transformed by time-dependent
poses and articulations. The rest shape is a category-specific
triangular mesh M = (V, F ) that represents the mean shape
of instances in the category: the faces F define the vertex
connectivity and we assume it remains fixed. To initialize
the rest mesh, we run marching cubes on a 1283 grid to find
the zero level set of the neural field that serves as the teacher
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NeRF’s implicit rest shape. Although explicit mesh repre-
sentations are less expressive than implicit neural fields, we
find that a feed-forward predictor benefits from the speed of
rasterization and the simplicity of regressing vertex colors.
Per-instance pose and articulation. At each frame t, we
model the object’s viewpoint and articulation similar to the
dynamic NeRF literature. The viewpoint is a root body
transformation Gt ∈ SE(3), and we use neural blend skin-
ning [9, 39] to express object articulations. For each frame,
the bone configurations for neural blend skinning are pa-
rameterized by a joint angle vector At ∈ SO(3)b, which
is predicted by our feed-forward network from input video
frames. See Sec. 3.3 for more details.
Appearance. As our mesh topology is fixed, we can simply
model the object’s appearance as an array of per-vertex col-
ors Ct ∈ R|V |×3 at each frame t. Following the standard
rasterization pipeline, barycentric coordinates are used to
interpolate the vertex colors per triangle during rendering.
Rendering. We assume a weak-perspective camera projec-
tion defined by a fixed camera at the origin pointed along
the negative-z axis. To render the object in video frame
t, we apply the predicted viewpoint Gt ∈ SE(3) at time
t, followed by the blend skinning deformation specified by
predicted bone configuration At ∈ SO(3)b using forward
kinematics and dual-quaternion blend skinning.

3.3. Time-Varying Articulation via Blend Skinning

To represent articulated body motion, we use a neural
blend skinning model to define a 3D warping field Wt on
top of a category-level kinematic skeleton. After computing
the skeleton’s forward kinematics, each point is deformed
by a weighted combination of per-bone transformations.
Category-level skeleton. Unlike color and 3D shape which
are directly observable from imagery, an object’s bone
structure is much harder to infer. Automatic skeletal rigging
methods [15, 26] rely heavily on shape priors, or are sensi-
tive to input data. Fortunately, bone structures are largely
fixed within categories up to slight variations in bone length
and body part scale. Thus, we can use readily available
generic skeletons of humans, quadrupeds, and other cate-
gories to specify the bone structure of each category. Skele-
tons are defined by a tree structure with B + 1 variable-
length bones and B ball joints, where B = 19 for humans
and B = 26 for quadrupeds.
Forward kinematics. Each bone b has a link transforma-
tion Lb ∈ SE(3) specifying the bone length and a joint
transformation Jt

b ∈ SE(3) specified by the joint angle
At

b ∈ SO(3). The result for each link b is a sequence of
alternating transformations from the skeleton’s base to the
link’s end, where b1, b2, . . . , b are the parent links up to b:

Tt
b = Jt

bLb . . .J
t
b2Lb2 . . .J

t
b1Lb1

Blend skinning. From per-bone kinematic transformations

Tt
b and root body pose Gt, we use dual-quaternion blend

skinning to compute a 3D warping field W(X):

W(X)t = (
∑

b W(X)tb ·Tt
b) ·Gt

Skinning weights W(X)tb are specified by the softmax’ed
distances between rest mesh vertices X and bone centers.

3.4. Network Architecture

Single-frame image encoder. Given a video of length T ,
we use off-the-shelf PointRend [12] to compute segmenta-
tions and DensePose [7, 23, 24] to compute per-pixel CSE
features. Each RGB image is concatenated with features,
then masked and cropped to 1.2x the tight bounding box
of the object. We find that using dense pretrained features
improves convergence speed over RGB inputs alone. We
pass the preprocessed frames into a convolutional stacked
hourglass network [25], which uses repeated pooling and
upsampling to process features across multiple scales and
spatial locations. The stacked intermediate outputs of each
hourglass module are passed into a ResNet18 [8] network
which predicts latent vectors zview and zart: zview is decoded
into the viewpoint Gt ∈ SE(3) and zart is decoded into ar-
ticulated joint angles At ∈ SO(3)B . We use 6D rotations
to represent angles during training [47].
Viewpoint branch. As the space of possible viewpoints is
discontinuous and multi-modal, it is difficult to approach
the optimum through iterative gradient descent. Following
[6], we use a viewpoint decoder network MLPview to de-
code zpose into a set of M viewpoint hypotheses Gt

{1,...,M}
weighted by wt

G ∈ RM . Fig. 3 shows the variation over
viewpoint hypotheses at an early stage of training.
Articulation branch. Estimating 3D articulations from
monocular images can be difficult due to depth ambigui-
ties and occlusions. To resolve this, recent work on human
pose estimation [37] uses a normalizing flow articulation
prior represented as an invertible neural network, trained on
large-scale human motion capture datasets. Without access
to such datasets for other categories, we achieve a similar
effect by leveraging the teacher’s articulation priors, using
the teacher’s frozen articulation decoder MLPart to decode
zart. Fig. 4 visualizes the principal components of zart’s la-
tent space: we find that perturbing zart along its principal
components causes the resulting articulated shape to per-
form natural motions, such as curling up in a ball.
Appearance branch. As the object in the video is only par-
tially observable at any given time, we must use data priors
or look at nearby frames to output complete appearance pre-
dictions Ct ∈ R|V |×3, represented as per-vertex colors of
the articulated mesh at each frame. Our teacher [44] mod-
els global object appearances as a category-level neural field
modulated by a texture code zcolor ∈ R64. We leverage these
appearance priors by predicting an environment code per

3



Feed-forward network

Feat

Seg

RGB

3D Loss

  Articulated meshes

  Pose and articulation branch

Stacked hourglass Resnet-18

zart

Viewpoint
hypotheses Temporal

encoder
...

Viewpoint

Articulation
decoder

Temporal
encoder

Joint 
angles

  Appearance branch

Temporal
encoderResnet-18

ztexture

Texture
decoder

Vertex
colors

Articulation
code

Preprocessing
Student Model
Teacher Model zview

Viewpoint
code

Texture
code

Dynamic NeRF (offline)
  Articulated volumes

Input video

Figure 2. Architecture details. We train a feed-forward network (shown in blue) to predict articulations and textures from videos,
supervised by the pseudo-ground-truth outputs of an offline dynamic NeRF teacher [44] (including 3D shapes, articulations, and textures).
To simplify the learning task, our feed-forward network outputs in a high-dimensional latent space: the dynamic NeRF’s frozen decoder
networks (shown in purple) are used to convert articulation codes into joint angles and texture codes into 3D surface textures. Spatial
per-vertex L2 losses are used to supervise the articulated 3D outputs against the articulated pseudo-ground-truths.
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Figure 3. Viewpoint multiplexing during training. To overcome
the discontinuous and multi-modal nature of pose optimization, we
train our feed-forward predictor to output a set of M viewpoint hy-
potheses rather than a single viewpoint. Blending multiple view-
point hypotheses yields a more accurate prediction (here M = 5).
Top row: Input frames. Second row (white): Blended viewpoint
prediction. Bottom rows (light blue): M viewpoint hypotheses
outputted by single-frame encoder.

frame, modulating the teacher’s frozen category-level neu-
ral field, and querying it at the rest mesh’s vertex locations.
Temporal encoder. Predicting pose and shape from single
images can be highly ambiguous due to motion blur, occlu-
sions, and depth ambiguities. To output temporally consis-
tent results over long videos, we define a temporal encoder
that updates zview, zart, and zcolor across many frames. We
treat the viewpoint multiplex zview as a single vector by con-

Left paw in front Right paw in front

Hind paws retracted Hind paws extended

Front paws retracted Front paws extended

Straightened posture Curled-up posture

zart[0]

zart[1]

zart[2]

zart[3]

Figure 4. Visualizing articulation code. Rather than training our
feed-forward predictor to output high-dimensional (75) skeletal ar-
ticulations, we leverage the teacher’s pre-trained articulation space
by predicting a low-dimensional (16) code. We visualize the first
four principal components of the articulation code learned from
the training dataset and find that variations along each axis corre-
spond to interpretable motions: (1) whether the left or right paw is
in front, (2) whether the hind paws are retracted or extended, (3)
whether the front paws are retracted or extended, and (4) whether
the cat has a straightened or curled-up posture.

catenating all M hypotheses. Following prior work [11],
our temporal encoder has several 1D transformer layers act-
ing on a temporal window centered at time t.
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3.5. Losses and Supervision

Optimization objective. Treating the teacher’s outputs as
pseudo-ground truths, our model can be trained in a stan-
dard supervised manner. We would like to use the teacher’s
inferred low-dimensional latent codes as supervisory targets
for the student. But rather than defining L2 losses in the la-
tent embedding space, where each dimension of zview, zart,
and zcolor has varying importance, we instead render these
codes and compute 3D losses. As all articulated meshes
have the same topology, we can define geometry and color
losses as per-vertex L2 error.

Lgeom =
∥∥∥Xt − X̂t

∥∥∥
2

Lcolor =
∥∥∥Ct − Ĉt

∥∥∥
2

To improve articulation learning and account for multi-
ple possible inverse kinematics solutions while solving for
joint articulations, we add a joint loss defined as geodesic
distance between predicted and actual joint angles at each
joint. We find that this improves deformation quality.

Ljoint = Dgeodesic(A
t, Ât)

Our training objectives are summarized below:

L = Lgeom + Ljoint + Lcolor

4. Experiments
Although we could have distilled a student using any

dynamic NeRF as the teacher, our implementation uses
BANMo [44] because it has public code, accepts unanno-
tated monocular videos as input, and produces good results
on humans and quadrupeds. We modified BANMo to re-
place the bag-of-bones deformation model with a skeleton.
Hyperparameters. Our method is implemented in Py-
Torch. We use the AdamW optimizer and train the model
for 16k iterations, taking around 4 hours on a single RTX-
3090 GPU. We use 224 × 224 images with batch size 56.
We use 8 stacked hourglass blocks in the image encoder
and a window size of 13 frames in the temporal encoder.
All losses are weighted to have similar initial magnitudes.
Staged training. We adopt a two-stage training strategy at
every epoch to reduce the computational costs of evaluat-
ing an image encoder at every frame, when only a single
frame per time window will receive a gradient update. In
the first stage, we send frames through the image encoder
and compute per-frame losses without using the temporal
encoder, storing per-frame values of zpose, zart, and zcolor.
In the second stage, we send time windows of cached fea-
tures through the temporal encoder without using the image
encoder. Two-staged training reduces redundant image en-
coder evaluations and ensures that the temporal encoder can
be safely removed if we only have access to single images
rather than time windows of frames at test time.

Table 1. Datasets. All videos are treated as casually col-
lected monocular RGB videos, except when additional ground-
truth meshes or depth maps are needed for evaluation. Process-
ing time includes computing segmentations and per-pixel features
with off-the-shelf networks, as well as computing pseudo-ground
truth 3D outputs with the teacher.

Total Total Total Test Test Processing
Videos Instances Frames Instances Frames Time (hr)

Humans 48 28 6.4k 10 1.6k 22.0
Cats 77 56 11.7k 13 2.7k 23.2
Dogs 88 78 9.7k 17 1.7k 23.8

4.1. Datasets

We collect datasets for three categories: humans, cats,
and dogs. For humans, we combine datasets from AMA
[35], MonoPerfCap [41], DAVIS [29], and BANMo [44] to
obtain 48 human videos. We evaluate on AMA and MonoP-
erfCap as they have ground-truth meshes. For cats and dogs,
we collect 77 cat videos and 88 dog videos from the Pex-
els stock video website as well as BANMo released data.
We also used an iPad Pro to capture two RGB-D videos to
evaluate depth accuracy on cats and dogs. Video frames are
extracted at 10fps. Datasets are summarized in Tab. 1.

To compute BANMo pseudo-ground-truths per category
without optimizing dozens of independent BANMo models,
we optimize a single BANMo model per category, using ar-
ticulation and texture codes to model shape and appearance
differences across instances. As a result, the total dataset
processing time is about 24 hours per category on 8 RTX-
3090 GPUs. We find that BANMo generalizes quite well
from the instance-level to the category-level setting [45],
and that the articulation and texture latent spaces cover the
range of motions and textures across all instances.

4.2. Reconstructing Humans

Dataset. Following BANMo, we evaluate human recon-
struction on the AMA [35] dataset, containing 10 real-world
mesh sequences depicting 3 different humans. The sub-
jects wear loose clothing and perform challenging actions
such as dancing and performing a handstand. Although the
AMA videos were captured in an 8-camera studio to enable
ground-truth mesh extraction, we treat them as casually col-
lected monocular videos and do not use the camera intrin-
sics, camera extrinsics, or time synchronization.
Comparisons. We compare against template-free BANMo
[44], as well as model-based methods HuMoR [31] and
ICON [40]. BANMo fits an animatable 3D model to
multiple monocular videos of an object instance by per-
forming differentiable rendering optimization. We train
BANMo on the same dataset as our model. HuMoR is a
human-specific temporal pose and shape predictor that per-
forms test-time optimization on video sequences, leverag-
ing OpenPose keypoint detection and motion priors learned
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Figure 5. Qualitative results on humans (left), cats (middle), and dogs (right) in the test set. From left to right for each category,
we show the input images, articulated shape and texture predictions overlaid on the input images, and three different viewpoints of the
predicted geometry. Our method operates on casual monocular videos and predicts plausible shape, articulations, and textures in real-time.
Our predictions align well with the image evidence on challenging inputs.

from large-scale human motion capture datasets. ICON is
the current SOTA for single-view human reconstruction,
and it combines implicit functions with the SMPL human
body model, using test-time optimization to fit surface nor-
mal predictions and improve pose accuracy and reconstruc-
tion quality. All our baselines require far more processing
time than our model, which runs in real-time.

Metrics. We report 3D chamfer distance and F-scores on
three held-out test sequences in Tab. 2, averaged across
all frames. Chamfer distance is the average distance be-
tween the ground-truth and predicted mesh vertices using
nearest neighbor matches. As this can be sensitive to out-
liers, we also evaluate F-score at distance thresholds d ∈
{1%, 2%, 5%} to better quantify reconstruction error at dif-
ferent granularities. We scale predicted meshes by their
view-space bounding box height to account for unknown
scale compared to registered ground-truths. Our model ap-
proaches the performance of BANMo and baselines, while
requiring nearly 1000x less compute at test time.

Qualitative Results. We show qualitative comparisons for
upright and inverted humans in Fig. 7. HuMoR outputs
a deformed SMPL model, while ICON and BANMo opti-
mize for both shape and articulation. Although our method
outputs reasonable articulations for the upright pose, the
woman lacks fine-grained geometry details and the view-
point on the handstand video is inaccurate. We hypothesize
that these failures occur due to the entanglement between
articulations and per-instance morphologies, and the lack
of handstand examples in the training set.

4.3. Reconstructing Cats and Dogs
Dataset. We evaluate cat and dog reconstruction on two
RGB-D pet videos, as well as a held-out test set of pet
videos from BANMo’s dataset. These videos contain chal-
lenging motions such as rapid turns and jumping off chairs.
Comparisons. We compare against BANMo [44] and
BARC [32], a model-based approach and the current SOTA
for dog shape and pose estimation from images. BARC
trains a feed-forward network using images with keypoint
labels and synthetic SMAL dog models [4], leveraging
breed losses as additional supervision. As BARC is image-
based, we run it separately on each video frame.
Metrics We report the root mean square depth error and
depth accuracy for all foreground pixels in Tab. 3, aver-
aged across all frames. We render a synthetic depth map
per frame, and following [19], we account for the unknown
global scale factor between depth maps by aligning the me-
dian rendered and ground-truth depths at each frame:

si = median
x

{
Dpred

i (x)/Dgt(x)
}

Depth accuracy is computed as the proportion of foreground
pixels whose synthetic depth is within a given threshold.
Qualitative Results We show qualitative results compar-
ing to BARC in Fig. 6. BARC performs well at predict-
ing coarse shape and deformations, and more faithfully cap-
tures the fine motion and geometry details of the dog when
it is positioned well in frame. However, as BARC entangles
shape and breed, we find that BARC may predict biased
shapes for certain breeds. For example, in the bottom left
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Figure 6. Qualitative comparisons on pet sequences. From left to right in each column, we show (left) the input image, (middle-
left) BARC’s prediction, (middle-right) our articulated shape and texture predictions, and (right) our geometry predictions. Our method
operates on videos and predicts plausible shape, articulations, and texture in real time. BARC operates on each video frame independently,
resulting in jittery predictions when the pet is small or not clearly visible (top row). While BARC’s geometry and motion predictions are
largely accurate, they can be biased for certain breeds (bottom left), predicting an arched back for a flat-backed dog.

Table 2. Quantitative results on AMA sequences. 3D chamfer distance (cm, ↓) and F-score (%, ↑) for articulated meshes, averaged over all
frames. T_samba is a held-out video of a person that was seen during training, while the D_bouncing and D_handstand sequences
contain a previously unseen person. Our model approaches the performance of BANMo and baselines while requiring nearly three orders
of magnitude less compute at test time. Other baselines are trained on 3D human data, rely on the SMPL body model, or use expensive
test-time optimization to improve results. We also report the model inference time (ms) per frame. Results marked by ∗ are different runs
with the same hyperparameters. The best results are in bold. Please refer to Sec. 4.4 for discussions on the ablation results.

Method Time
T_samba D_bouncing D_handstand

CD F@1% F@2% F@5% CD F@1% F@2% F@5% CD F@1% F@2% F@5%

Ours∗ 67 11.17 83.7 61.5 28.8 15.27 73.7 47.2 19.6 24.56 57.0 33.1 13.1
HuMoR 42000 10.32 88.3 60.8 26.0 11.75 85.1 56.6 23.4 30.24 46.4 25.1 9.7
ICON 63000 10.43 85.9 62.3 29.7 9.77 88.3 65.6 31.0 16.02 72.5 48.2 20.4
BANMo 43000 11.56 82.7 57.0 25.3 10.90 86.2 64.9 29.8 15.22 75.5 50.7 21.8

No temporal encoder 65 12.86 80.3 56.1 24.6 15.55 73.2 46.9 19.6 27.42 51.1 28.8 11.3
Conv1D encoder 67 12.30 80.4 58.9 28.1 15.92 72.0 44.6 18.4 23.49 54.9 31.4 12.4
Transformer encoder∗ 72 11.49 83.2 61.1 28.9 14.47 76.9 51.5 21.8 27.15 55.6 36.2 15.4

w/o frozen decoders 66 14.10 77.7 51.2 21.9 14.72 75.7 48.6 19.9 31.15 49.7 31.5 13.1

643 template grid 55 14.21 76.9 51.6 21.6 16.27 72.0 45.9 18.8 24.31 52.9 29.0 11.2
1283 template grid∗ 67 10.84 85.0 62.4 29.6 15.10 75.1 48.7 20.3 25.70 56.0 35.8 15.2
2563 template grid 73 12.38 80.7 58.0 27.0 15.60 73.6 47.7 20.0 23.99 54.5 31.3 12.7

5 train videos 67 46.98 22.1 10.4 4.2 18.45 65.2 39.0 15.6 23.72 54.6 31.6 13.0
16 train videos 67 34.23 32.5 17.6 7.1 16.87 69.8 42.9 17.7 24.67 54.4 29.7 11.3
26 train videos 67 10.92 83.8 62.8 32.0 16.04 72.5 46.9 19.5 28.07 47.5 26.1 10.2
35 train videos∗ 67 12.28 81.4 57.3 25.7 16.58 70.4 42.5 17.2 27.64 42.2 22.5 8.9

of Fig. 6, BARC predicts a rounded back but the back is
flat in reality. For the inputs on the top row, BARC’s single-
frame architecture makes jittery predictions from frame to

frame, while our temporal architecture enforces consistency
and prevents large discontinuities in pose and deformation.
In the middle top image, which is particularly challeng-
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Table 3. Quantitative results on RGB-D pet sequences. Root mean square depth error (↓) and depth accuracy (%, ↑) for all foreground
pixels in the depth map, averaged over all frames. We also report the model inference time per frame (ms) on a RTX-3090 GPU. Although
BANMo consistently does better, our method approaches its quality while being nearly 1000x faster at test time. Best results are in bold.

Method Time
dog cat

RMSE Acc-1% Acc-2% Acc-5% RMSE Acc-1% Acc-2% Acc-5%

BANMo 54000 0.0411 28.6 45.3 72.7 0.0757 27.7 47.4 76.5
Ours 72 0.0621 13.4 24.2 46.2 0.1292 20.9 35.0 63.7

HuMoR ICON BANMo OursImage

HuMoR ICON BANMo OursImage

Figure 7. Qualitative comparisons on human sequences. From
left to right, we show the output of HuMoR [31], ICON [40],
BANMo [44], and our method on dancing (top) and handstand
(bottom) sequences. Our method outputs plausible articula-
tions for the dancing sequence, although the shape lacks fine de-
tails. In comparison, HuMoR outputs the SMPL template human
shape, while ICON and BANMo output more detailed shapes.
All methods perform poorly on the highly challenging handstand
pose: HuMoR outputs unrealistic and self-intersecting articula-
tions. ICON’s prediction appears bumpy and twisted in an unnatu-
ral way. BANMo’s prediction is also twisted and misses the head.
Our method outputs incorrect viewpoint and arm articulations.

ing because the dog is standing on its hind legs, both our
method and BARC fail to show that the dog is lifting its
front paws. As our method does not disentangle articula-
tion and morphology variation between breeds, incorporat-
ing breed and/or instance information would likely improve
our ability to represent fine motion and geometry details.

4.4. Ablations

We performed an ablation study on several architectural
details including the choice of temporal encoder, the use of
frozen decoders from the teacher, the template grid resolu-
tion, and the number of training videos. Most notably, we
find that increasing the density of mesh points by running
marching cubes at a finer resolution (from 643 to 1283 im-
proves the F@1% and F@2% accuracy of our student, as well
as using a temporal encoder. Changing the marching cubes
resolution involves no change to the student, but simply a
more faithful post-processing of the teacher’s output.
Effect of temporal encoder. The student model performs
better with a temporal encoder across all sequences, perhaps
by providing additional temporal context to help smooth the

predictions. In general, the transformer encoder seems to
outperform the 1D convolutional encoder in accuracy but
not speed.
Effect of frozen decoders. We find that the student model’s
performance generally drops without using the teacher’s
frozen articulation decoder to regularize pose predictions.
Effect of template shape resolution. When extracting the
template shape with a 643 grid, our model’s F@1%, F@2%,
and F@5% accuracy all seem to drop. Qualitatively, the 643

template shape is less detailed and appears fuzzy compared
to 1283 or 2563, though the predicted articulations are sim-
ilar. There seems to be little difference between 1283 and
2563, and the observed results could be up to noise. As
more points need to be warped to the deformed space, more
detailed templates have slower inference speed.
Effect of dataset size. We find that performance generally
deteriorates with less data, although the trend is not as clear.
Here, each smaller set of training videos is a subset of the
immediately larger video set. As all videos containing the
T_samba identity are within the set of 26 videos, increas-
ing the dataset size from 26 to 35 involved adding videos of
unrelated identities which seemed to hurt performance.

5. Discussion
We present a method to train category-specific feed-

forward video shape predictors by distilling knowledge
from dynamic NeRF teachers fitted to offline video data at
scale. Our temporal architecture predicts consistent view-
point, articulation, and appearance, producing real-time
video reconstruction results on humans, cats, and dogs with
the ability to support other categories as well. We qualita-
tively outperform existing feed-forward predictors for dog
shape and pose, and approach the quality of test-time fitting
methods while using nearly 1000x less computation.
Limitations: As our method is trained on the pseudo-
ground truth outputs of a teacher model, we are upper-
bounded by the teacher’s performance and reconstruction
fidelity. We expect the performance of our method to im-
prove given larger-scale, more diverse, and higher-quality
video data. Compared with optimization-based methods,
our method is hundreds of times faster but produces results
less faithful to the inputs: we leave incorporating optimiza-
tion into the feed-forward architecture as future work.
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