
Feed-forward parametric body models are fast,
but it’s hard to get 3D templates for arbitrary objects.

(requires expensive 3D registration and scanning!)
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1.  Introduction

Table 1: 3D chamfer distance (cm, ↓) and F-score (%, ↑) for humans, averaged over all frames.
We also report average inference time per frame (ms) on an RTX-3090 GPU.

 
 

Our method approaches the quality of BANMo and baselines, and is 600x faster.

4.  Results

How to reconstruct articulated objects
from imagery in real-time?

Input: RGB stream Output: Articulated 3D model

Challenge: Without multiple views or depth sensors, it is 
hard to infer accurate shape/motion from casual videos.

2.  Related Work

Using differentiable rendering optimization to jointly
learn shape and motion is accurate, but far too slow.

(takes hours per video!)

Motion Predictors

VIBE (M.Kocabas, CVPR 2019)
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BANMo (G. Yang, CVPR 2022)

3.  Method

Our method distills slow-but-accurate shape and motion 
optimizers into a fast, single-pass shape predictor.

Step 1: Train a teacher model to optimize for shape and 
motion offline, given input videos from a category (50+).
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Conclusion: Category-specific dynamic NeRFs can be distilled into feed-forward shape predictors, enabling real
time shape prediction from casual videos at scale (600x speedup). For video results, please see the project page.

samba

Figure 1:

bouncing

handstand

dog

cat

Figure 2: Comparison vs. BARC, a real-time forward dog model.
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Figure 3: Failure cases on challenging inputs and poses.
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Step 2: Train a student model to output forward shape 
predictions, supervised in 3D by the teacher’s output
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Figure 4: Qualitative 
comparison on humans.
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Distill

How to build general articulated body models from thousands of Internet videos?

5.  Future Work
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