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Figure 1. Gaussian splatting reconstructions of casually captured scenes often suffer from ghostly floater artifacts and incoherent geometry.
Given a raw splatting render (a) that contains artifacts from an arbitrary novel viewpoint, our method fine-tunes an image-conditioned diffu-
sion model to remove ghostly artifacts and infill plausible geometry. The outputted cleaned renders (b and c) have their artifacts removed,
and better align with the ground-truth images (d). Column (b) shows our ControlNet+StableDiffusion architecture, which hallucinates
aggressively, while column (c) shows our fine-tuned InstructPix2Pix architecture which yields the best quality.

Abstract

Gaussian splatting reconstructions of casually captured
scenes often suffer from ghostly floater artifacts and in-
coherent geometry, especially when the splatting model is
rendered at extreme views or when transient artifacts (e.g.
cars) are present in the training images. Most prior splat-
ting literature does not address these artifacts, as they eval-
uate on scenes with dense view coverage and no tran-
sients. To mitigate artifacts, our method fine-tunes image-
conditioned diffusion models to remove ghostly artifacts
and infill plausible geometry at arbitrary novel views. We
use our method to clean up large-scale, real-world scenes,
such that they appear plausible from extreme viewpoints
and remain consistent with the observed views.

1. Introduction

Gaussian splatting has greatly improved the efficiency of
novel-view synthesis from multiple posed RGB images. On
established benchmarks (e.g. Tanks and Temples), common
practice is to evaluate only on views close to the training
trajectory. However, splatting reconstructions are most use-
ful when they can be re-rendered from entirely new trajec-
tories, generating imagery far beyond the training views.
Such extreme-viewpoint re-rendering tends to produce per-
vasive floater artifacts and incoherent geometry (Fig. 2).
These artifacts are especially prominent when the training
images have only sparse view coverage, or are inconsistent
due to the presence of frame-specific transient occluders
(e.g. cars).

Given a casually captured splatting scene, it is challeng-
ing to detect and mitigate artifacts while remaining faith-
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Figure 2. Example of Gaussian splatting artifacts at extreme novel views. The building’s visual quality deteriorates significantly when the
camera orbits from a training view (left) to an extreme novel view (middle and right).

ful to the observed views. Prior work such as Nerfbusters
[12] uses a 3D diffusion prior to perform density control
on volumetric NeRFs: Nerfbusters can remove implausi-
ble artifacts, but cannot generate new textures as it oper-
ates on density alone. Image-to-image latent diffusion mod-
els, such as Stable Diffusion Inpainting, do have impressive
zero-shot capabilities to inpaint masked regions of exist-
ing scenes, however it require manual masks as input and
is not designed to detect or mitigate the specific artifacts
produced by gaussian splatting. Diffusion priors also fre-
quently hallucinate new textures or objects which are in-
consistent with the existing observations. Finally, several
recent works leverage 2D diffusion models for generative
editing of splatting reconstructions. These methods typi-
cally rely on text as input and are not capable of cleaning
splatting artifacts out of the box. Beyond simply removing
floater artifacts from novel-view renders, which can leave
large gaps in the scene, our method aims to generate new
geometry that plausibly completes the scene, while avoid-
ing hallucination and remaining as faithful as possible to the
observed views.

In this paper, we aim to detect and mitigate ghostly
artifacts from raw novel-view renders of gaussian splat-
ting scenes, by fine-tuning two foundational image-to-
image diffusion models. We formulate this problem as
a supervised learning task. First, we use a large library
of casually captured outdoor scenes from the MegaDepth
dataset [5], and generate a dataset that pairs raw novel-view
splatting renders with the corresponding ground-truth im-
ages. Then, using this dataset, we fine-tune two image-
to-image diffusion model architectures for the specific task
of splatting artifact removal. We find that our Control-
Net+StableDiffusion (CN+SD) architecture tends to heav-
ily hallucinate scene contents, while fine-tuning Instruct-
Pix2Pix performs much better at removing ghostly artifacts
from casually captured splatting scenes.

2. Related Works
2.1. Diffusion models for image editing

Latent diffusion models have been widely used for image
generation and editing. Stable Diffusion [8] is a large-scale
latent diffusion model that achieves state of the art results in
text-to-image generation. Large-scale training over billions
of text-image pairs allows Stable Diffusion to learn strong
priors about what 3D scenes typically look like. Leveraging
this foundational scene prior, InstructPix2Pix [1] use dif-
fusion models to generate a large dataset of image editing
examples, using these to train a conditional diffusion model
to edit images according to human instructions. Although
Stable Diffusion can only accept text as conditional input,
ControlNet [15] is a framework for modifying StableDif-
fusion to accept image conditions such as depth maps and
Canny edges. While the works above largely focus on im-
age generation using text or image conditioning, our goal
is to repurpose their foundational knowledge for mitigating
gaussian splatting artifacts from novel-view renders.

2.2. Mitigating artifacts in Gaussian splatting

NeRF and Gaussian splatting reconstructions often suffer
from ghostly artifacts when rendered at novel views. For
example, incoherent geometry is often observed when a vol-
umetric capture is re-rendered at an extreme novel view.
Several prior works try to mitigate this. Nerfbusters [12]
trains a local 3D diffusion model to perform density con-
trol on NeRFs. However, it leaves gaps in the scene and
cannot infill new textures at missing scene regions. Con-
current work [2] directly repurposes the denoising process
of text-to-image diffusion models for artifact removal, and
introduce a bootstrapping technique to remove splatting ar-
tifacts from existing scenes by denoising sampled novel
views. Our work attempts to solve the same problem via
fine-tuning.

Another source of artifacts arises when the lighting, cam-
era settings, or transient occluders in the scene vary across
different training views, which is often the case in crowd-
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sourced Internet-scale data [5]. In Gaussian splatting, such
frame-specific artifacts are typically explained by floater ar-
tifacts very close to the impacted cameras. NeRF in the
Wild [7] handles this by using a view-dependent appearance
code to modulate the rendering at each view, and Gaussians
in the Wild [14] extends this approach to Gaussian splat-
ting. VastGaussian [6] explicitly models view-specific de-
tails in the training images, such as different lighting pat-
terns, by passing both images and appearance embeddings
into a post-processing convolutional network. Our method
aims to clean up splatting reconstructions after the fact, and
is orthogonal to this category of work which mitigates arti-
facts during training.

2.3. Editing radiance fields with diffusion priors

Several works leverage 2D diffusion models for generating
or editing 3D radiance fields. DreamFusion [9] introduces
score distillation sampling for generating 3D objects by su-
pervising with pretrained 2D text-to-image diffusion mod-
els. DreamGaussian [10] improves the efficiency of 3D gen-
eration by using 3D gaussians instead of NeRFs as a scene
representation. InstructNerf2Nerf [3] performs instruction-
based editing of NeRFs by using InstructPix2Pix to itera-
tively update the dataset images [1]. InstructGS2GS [11]
extends this approach to perform instruction-based editing
of 3D gaussians. GaussCtrl [13] introduces depth condi-
tioned editing and attention based latent code alignment to
improve multi view consistency while editing.

3. Background
Our approach utilizes the differentiable Gaussian rasteriza-
tion pipeline as demonstrated by [4].

Each 3D Gaussian is parameterized by a full 3D covari-
ance matrix Σ, opacity α, mean position µ, and color rep-
resented by spherical harmonics (SH). Given the viewing
transformation W and approximation of the affine transfor-
mation J , we follow [16] to obtain the 2D view-space co-
variance matrix Σ′ to render the gaussians:

Σ′ = JWΣWTJT (1)

A covariance matrix assumes physical meaning only if
it is positive semi-definite, so it is challenging to directly
optimize it with constraints on gradient descent to repre-
sent a scene’s radiance field. [4] obscures this complexity
by utilizing an alternate paramaterization which implictly
maintains the positive semi-definiteness of the matrix. Intu-
itively, it views the covariance matrix Σ as a decomposition
into an ellipsoid’s scaling and orientation with rotation ma-
trix R and scaling matrix S.

Σ = RSSTRT (2)

We optimize the axes of the ellipsoid, R and S, which must
be positive—instead of an unconstrained Σ. The color C

is computed from reverse depth-sorted 2D gaussians via the
standard volumetric rendering equation along a ray:

C =

N∑
i=1

Ti(1− exp(−σiδi))ci, (3)

with:

Ti = exp(−
i−1∑
j=1

σjδj). (4)

In the optimization process, we employ adaptive density
control per [4] to control the density of the 3D Gaussians
that best represent the scene. Consequently, the total num-
ber of Gaussians will change over the iterations.

4. Method
We treat cleaning artifacts from casually captured splatting
scenes as a supervised learning problem. (1) In Sec. 4.1,
we generate a dataset of raw splatting renders paired with
ground-truth images, used to train generative models tai-
lored to our task. (2) Then, we fine-tune two pretrained im-
age editing diffusion backbones on this generated dataset:
ControlNet+StableDiffusion (Sec. 4.2) and fine-tuning In-
structPix2Pix (Sec. 4.3). Our model is able to generalize
to cleaning splatting artifacts from unseen scenes. We de-
scribe both steps of our approach below.

4.1. Dataset Generation

In order to generate a dataset of raw splatting renders paired
with ground-truth images, we leverage the MegaDepth
dataset [5]. Megadepth contains 300K images from 196 ca-
sually captured large scale outdoor scenes depicting famous
landmarks, with COLMAP SfM outputs for each scene. As
this data is crowdsourced from large-scale Internet image
collections, the images encompass a wide range of global
lighting conditions, as well as transient occluders (e.g. peo-
ple and cars). These variations across training views intro-
duce artifacts in the Gaussian splatting reconstructions, par-
ticularly at ground level where the transient occluders are
most numerous. We reconstruct MegaDepth scenes with
3D Gaussian Splatting and sample training and novel views
for re-rendering.

To simulate the category of artifacts caused by rendered
views being distant from training views, we only use 25% of
the available images per scene during training. The remain-
ing 75% of available images contain artifacts only visible
from novel views, such as floater Gaussians or incoherent
geometry. Presently, the held-out views in each scene are
randomly chosen. However, we also tried performing k-
means clustering of camera centers and randomly holding
out clusters of rendered views.

For the artifact removal task, we treat ground-truth im-
ages as training targets and rendered views as input image
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Figure 3. Examples from our generated dataset (Sec. 4.1). We show the raw splatting render on the top row, and the ground-truth dataset
image in the bottom row. Note the variety of Gaussian splatting artifacts, such as blurry and incoherent geometry, as well as floater
gaussians with different colors.

conditions to the diffusion model. For our experiments, we
generate 30k (rendered image, ground-truth image) pairs
from six MegaDepth sequences for training, and use a sev-
enth held-out MegaDepth sequence for evaluation. Fig. 3
shows some representative examples from the dataset.

4.2. ControlNet + Stable Diffusion

Figure 4. Our ControlNet+StableDiffusion (CN+SD) architecture.
Given a raw splatting render as the input image, and a generic
text prompt, our method produces a cleaned image with artifacts
removed, using the ground-truth image as the training objective for
Stable Diffusion with ControlNet. At each layer, trainable copy of
the Stable Diffusion weights is connected to the locked copy by
zero convolutions.

Our initial architecture aims to fine-tune Stable Diffusion
for the specific task of artifact removal from Gaussian splat-
ting renderings. To accomplish this, we employ the Control-
Net framework [15]. ControlNet is an end-to-end frame-
work for learning conditional controls for large pretrained
text-to-image diffusion models. ControlNet preserves the
quality and capabilities of the large model by locking its
parameters, and also makes a trainable copy of its encoding
layers. The trainable copy and locked copy are connected
with zero convolution layers, with weights initialized to ze-
ros such that they progressively grow during the training.
The locked copy preserves the capabilities of the pretrained
diffusion model, while the trainable copy reuses the pre-
trained model to learn a backbone capable of handling di-
verse input conditions. ControlNet shows the capability to
control Stable Diffusion with various conditioning inputs,

such as depth maps and Canny edges.
Specifically, suppose that F is a trained neural block

with parameters Θ, that transforms an input feature map x
into another feature map y as y = F(x; Θ). To add Con-
trolNet to this pretrained neural block, the parameters Θ of
the original block are frozen, and simultaneously cloned to
a trainable copy with parameters Θc. The trainable copy is
connected to the locked model with zero convolution lay-
ers Z where both weight and bias are initialized to zeros.
The complete ControlNet then computes the output yc of
the ControlNet block as follows:

yc = F(x; Θ) + Z(F(x+ Z(c; Θz1); Θc); Θz2) (5)

In our method, we provide Stable Diffusion with a noisy
splatting render as the image condition, a standard prompt
”clean the image” as the text condition, and the ground-truth
image as the training target. After fine-tuning, the model is
capable of identifying artifacts and infilling new geometry
in their place. However, we find that this approach tends to
hallucinate new spurious details everywhere in the scene, as
Stable Diffusion is primarily an image generation model.

4.3. Fine-tuning InstructPix2Pix

Figure 5. Our architecture for fine-tuning InstructPix2Pix (IP2P).
Given a raw splatting render as the input image, and a generic
text prompt, our method produces a cleaned image with artifacts
removed, using the ground-truth image as the training objective.

ControlNet+StableDiffusion is carefully designed with
zero convolutions, such that the trainable copy weights pro-
gressively grow during the training. This is necessary to
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ensure that the large-scale pretrained backbone is perfectly
preserved at the beginning of training. Perfectly preserv-
ing the capabilities of Stable Diffusion is extremely helpful
in the generative setting, but is not actually desirable in our
case, where we want the model to carefully preserve the fea-
tures of the conditioning image. Given this, the next archi-
tecture we tried was to adapt the InstructPix2Pix backbone
for the task of cleaning artifacts from Gaussian splatting.

Diffusion models learn to generate data samples by pass-
ing raw Gaussian noise through a series of denoising au-
toencoders, which estimate the score of a data distribution.
Latent diffusion models improve on the efficiency and qual-
ity of diffusion models by operating in the latent space of a
pretrained variational autoencoder with encoder E and de-
coder D. Given an an image x, the diffusion process adds
noise to the encoded latent z = E(x), producing a noisy la-
tent zt where the noise level increases over timesteps t ∈ T .
A network ϵθ is learned to predict the noise added to the
noisy latent zt, given the conditioning image cI and the text
instruction cT . In our case, the conditioning image is the
raw splatting render and the text instruction is a generic
prompt such as ”clean this image”. We minimize the fol-
lowing latent diffusion objective:

L = EE(x),E(cI),cT ,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, E(cI), cT ))∥22

]
(6)

Similar to InstructPix2Pix, we initialize the weights of
our model with a pretrained InstructPix2Pix checkpoint,
leveraging its vast capabilities to edit images according to
human instructions. To support image conditioning, zt and
E(cI) are concatenated and passed through additional in-
put channels to the first convolutional layer. We use the
same text conditioning mechanism as Stable Diffusion and
InstructPix2Pix.

5. Experiments
In this section, we evaluate each of our proposed methods
on a held-out scene and present quantitative and qualitative
results. Tab. 1 compares PSNR and LPIPS metrics across
the proposed methods. In Sec. 5.1, we compare to an out-
of-the-box InstructPix2Pix, used without fine-tuning. Sec.
5.2 shows the result of ControlNet + Stable Diffusion. Sec.
5.3 shows the result of fine-tuning InstructPix2Pix. Overall,
we find the ControlNet + Stable Diffusion model heavily
hallucinates spurious details in the image, while the fine-
tuned InstructPix2Pix model does a better job at cleaning
the splatting artifacts and adding missing details.

5.1. Baseline: InstructPix2Pix

As shown in Fig. 6, InstructPix2Pix is not designed to clean
splatting artifacts from images, and therefore heavily hallu-
cinates when used in our setup out-of-the-box. In all three
examples, the context of the scene is completely different

Table 1. Comparison of PSNR and LPIPS metrics on a held-out
validation scene from MegaDepth. From top to bottom, we show
metrics for the raw splatting render with artifacts, InstructPix2Pix
baseline, and outputs from our CN+SD and fine-tuned IP2P mod-
els. Fine-tuned IP2P performs the best of all methods we tried,
and removes artifacts while infilling blurry regions of the image.
Although the PSNR metric favors the blurry regions of the raw
splatting renders, our fine-tuned IP2P model achieves the best per-
ceptual LPIPS scores.

Method PSNR ↑ LPIPS ↓
Input Render 15.35 0.53
Baseline IP2P 5.78 0.73

CN+SD 9.58 0.66
Fine-tuned IP2P 13.02 0.51

after processing by InstructPix2Pix, and the modified con-
tents look extremely unnatural.

(a) Input (b) Baseline IP2P (c) GT

Figure 6. Qualitative results from the baseline InstructPix2Pix
model. From left to right, we show (a) the input image, (b) cleaned
splatting outputs, and (c) the ground-truth image. InstructPix2Pix
is not designed to clean artifacts from input images, and in all three
examples, we find that the raw IP2P model deviates significantly
from the input image.

5.2. ControlNet + Stable Diffusion Results

As shown in Fig. 7, our ControlNet + Stable Diffusion
model frequently hallucinates spurious details. We attribute
this to the design of ControlNet, which perfectly preserves
the capabilities of Stable Diffusion at initialization and is
therefore best suited for generative tasks. At initialization,
ControlNet’s zero convolutions are designed to zero out any
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influence from the conditioning image, meaning that in our
setup the raw splatting render does not influence the result
at first.

(a) Input (b) CN+SD (c) GT

Figure 7. Qualitative results from the ControlNet + Stable Diffu-
sion model. From left to right, we show (a) the input image, (b)
cleaned splatting outputs, and (c) the ground-truth image. In all
three examples, the CN+SD model deviates significantly from the
input image and hallucinates spurious details, such as the elephant
and newspaper text in the middle row and the colorful geometry
on the bottom row.

5.3. Fine-tuned InstructPix2Pix Results

As shown in Fig. 8, the fine-tuned InstructPix2Pix model
has the ability to plausibly remove blurry artifacts and re-
place them with the missing geometry. Most of the remain-
ing mistakes are from global lighting variations or transient
occluders, however it is unrealistic to expect the IP2P model
to infill these exactly. Even though the global lighting and
hallucinated transients do not exactly match the training im-
ages, we find that the predicted global lighting is reason-
able, and the transients are indeed inserted into reasonable
parts of the scene such as the people added to the courtyard.

6. Conclusion

Our project aims to automatically detect and clean artifacts
from Gaussian splatting renders using generative diffusion
priors. We found that a generative design, such as Control-
Net + Stable Diffusion, is prone to aggressive hallucination
that ignores the context of the scene, while fine-tuning the
InstructPix2Pix architecture yields more faithful behavior
that plausibly removes the artifacts.

(a) Input (b) IP2P (c) GT

Figure 8. Qualitative results from the fine-tuned InstructPix2Pix
model. From left to right, we show (a) the input image, (b) cleaned
splatting outputs, and (c) the ground-truth image. In all three ex-
amples, the fine-tuned IP2P model enhances the blurry regions of
the input images, predicting for example a tiled floor pattern in the
middle row and a smooth courtyard with pedestrians in the bottom
row.

Limitations. (1) Our proposed method only post-processes
the Gaussian splatting renderings. Artifacts are still present
in the original splatting scene, and might be resolved dif-
ferently at different views. Improving the multi-view con-
sistency of our method is an important, and could perhaps
be addressed by incorporating multi-view conditioning into
diffusion models, or by using our fine-tuned diffusion mod-
els to update the original splatting scene with SDS loss.

(2) Even though fine-tuned IP2P models produce results
faithful to the input image, they are not faithful to the scene
as a whole, often hallucinating transient occluders such as
people and cars. We also noticed drastic lighting inconsis-
tencies between the input and cleaned images. These in-
consistencies can likely be mitigated by training on higher-
quality data where global lighting variations and transient
occluders are less prominent.
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