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1 Summary

For my final project, I implemented the following features in DIRT:

e Bidirectional path tracing (Advanced, 10pts): BDPT is a generalization of the standard
path tracing algorithm that constructs paths that start from the camera on one end and the
light source on the other end, connecting them in the middle with a visibility ray. It better
handles difficult lighting conditions and reduces the variance of the image. Unlike photon
mapping, BDPT is unbiased and does not blur the scene illumination.

¢ GGX Microfacet BSDF model (Simple, 2pts): Accurately modeling transmission through
a rough refractive boundary, for example glass and unpolished metals, is difficult in computer
graphics due to the need for physically based and verified models. The GGX microfacet
BSDF is empirically better able to model transmission through a rough refractive boundary,
providing a closer match for certain surfaces compared to the standard Beckmann distribution
function which we implemented in Assignment 2.

e Parallelism on CPUs: DIRT is single-threaded, which significantly slows down renderings
when rendering large images, interacting with complex scene geometry, or when using a
large number of image samples. With the wide availability of multicore CPU processors and
the abundant parallelism available during rendering as each pixel is sampled independently,
implementing CPU-based parallelism can bring significant speedups without much effort.

In each section below, I provide a theoretical summary of one of these features, describe the technical
details of my implementation in DIRT, and show some feature-specific results and renderings to
showcase the feature’s impact.

2 Parallelism on CPUs

2.1 Feature Description

In this section, we aim to parallelize DIRT on a multicore CPU processor to bring significant
speedups to DIRT without much effort. Compared to GPU-accelerated raytracing which requires
completely rewriting the code into GPU kernels from the ground up, CPU-based parallelism is
comparatively simple to implement.



2.2 Implementation Details

Sequential implementation: The standard implementation of DIRT is single-threaded, and the
Integrator class renders each scene as follows, where resolutionX and resolutionY denote the
image resolution and numSamples denotes the number of samples per pixel:

e for y in range(resolutionY):

e for x in range(resolutionX):
e image(x, y) = Black
e for sample_idx in range(numSamples):
e sample = sampler.generateSample()
e ray = camera.generateRay(sample)
e image(x, y) += Emitted radiance along ray

e image(x, y) /= numSamples

Here, we loop through each pixel and for each sample, we generate a random sample, generate a
random camera ray passing through that pixel, and accumulate the emitted radiance along that
ray onto the image

Parallelism strategy: Because the camera and scene geometry are fixed, the outer two for-loops
are easy to parallelize as their data can be shared between threads. Only the sampler needs to
be duplicated across threads, as it has internal state that would be costly to synchronize between
threads. After each thread is done rendering, we also need to aggregate the rendered pixels from
each thread to create the output image.

Granularity size: Parallelizing across the image dimensions in theory gives us resolutionX *
resolutionY units of parallel work, but since we are parallelizing on CPUs, we only have at most
64 or 128 threads available in hardware. Therefore, it is important to choose the granularity size
well, as a too-large granularity results in uneven work distribution and idle threads towards the
end of execution, while a too-small granularity results in excess overhead needed to create threads,
distribute work, and aggregate the results. As a middle ground between these extremes, we divide
up the image into 16 x 16 tiles and treat each tile as an individual unit of work to be distributed
across threads.

Parallel implementation: Our parallel implementation of DIRT is summarized as follows:

e tiles = // Divide image up into 16x16 tiles

e mutex = // Create a mutual exclusion lock guarding access to the global image

e parallel for tile in tiles:

e // Create and seed a thread-local copy of the sampler
e (x0, x1, yO, y1) = // Compute sample bounds for this tile
e for y in range(y0, yi):
e for x in range(x0, x1):
e tile(x, y) = Black



e for sample idx in range(numSamples): tile(x, y) += Sample i

*  sample = sampler.generateSample()
*  ray = camera.generateRay(sample)
*

tile(x, y) += Emitted radiance along ray
e tile(x, y) /= numSamples

e // Acquire mutex and merge tile into global image

Here, we divide up the image into 16x16 tiles and define a mutual exclusion lock to guard access to
the global image. In parallel, across the set of image tiles, we generate a unique Sampler instance
for that tile, compute the sample bounds of the tile, and loop over the pixels in the tile as before,
rendering each pixel using independent samples. At the end, we acquire the mutual exclusion lock
and accumulate the image tile onto the global image.

Sampler initialization: It is necessary to construct a unique Sampler instance per tile because
the RNG inside the sampler has internal state which is expensive to synchronize between threads.
To ensure that each sampler generates unique random numbers, we seed each tile’s sampler with
that tile’s linear index, computed as tile.y * nTiles.x + tile.x. Here, tile.y and tile.x are
the (z,y) coordinates of the tile and nTiles.x represents the number of tiles needed to cover the
width of the image, which is equal to ceiling(resolutionX / 16).

Parallel-for implementation: In order to implement parallel for, we represent each unit of
parallel work using a ParallelForLoop class that encapsulates the arguments and function body
of a C++ lambda expression. We create a linked list of ParallelForLoop objects for each tile in
the image, and define a thread pool that continually pulls tiles off the work queue and executes
the lambda expression within. This lambda expression is responsible for duplicating the sampler,
computing tile bounds, and rendering then merging in a particular image tile.

2.3 Results

Our implementation yields significant speedups on a wide range of integrators and samplers. Shown
below is a table of runtimes to render various scenes, using an 8-core Intel i7-9700K CPU, 32 spp,
path tracing, and independent sampling:

Scene ‘ 1 core (s) ‘ 2 cores (s) ‘ 4 cores (s) ‘ 8 cores (s) ‘ Speedup

teapot 80.00 38.50 20.00 10.00 8.00x
cornell-box 21.50 11.00 5.50 3.00 7.16x
veach-mats 13.50 7.00 4.00 2.00 6.75x

earth 3.00 1.75 1.00 0.50 6.00x

Shown below are two examples of cornell-box rendered with and without parallelism, using 128
spp, path tracing with NEE, and independent sampling, to show that the output is the same up to
random noise:



With parallelism Without parallelism

Performance analysis: With more complicated scenes that require a longer runtime, the parallel
speedups approaches the theoretical maximum of 8x. The teapot scene includes a detailed triangle
mesh that requires large numbers of BVH acceleration structure lookups and triangle-ray intersec-
tion tests, which gives each thread more work to do and amortizes the overhead of creating and
managing a parallel work queue. On the other hand, scenes with simpler geometries and faster
render times such as earth and veach-mats have lower overall speedups.

2.4 Supporting Bidirectional Path Tracing

The approach described above does not fully extend to bidirectional path tracing. In the ¢t = 1
case of BDPT, there is the possibility of sampling light paths that connect directly to the camera
with a visibility ray. Since these paths have the potential to write to any location on the image,
the output is no longer confined to just the image tile that the renderer is currently considering.
To deal with this case, we simply acquire the global image lock and accumulate the contribution
of t = 1 rays directly onto the global image.

Despite the more frequent locking, this does not result in worse performance characteristics. This
is likely because the amount of computation time greatly outweighs the amount of time needed to
merge the images, so there is not much contention between threads. Shown below is the runtime
needed to render cornell-box, using the same hardware, 32 spp, bidirectional path tracing with a
max depth of 8, and independent sampling. Since BDPT requires more computation, we are able
to get better speedup:

Scene | 1 core (s) | 2 cores (s) | 4 cores (s) | 8 cores (s) | Speedup
cornell-box | 50.50 | 26.00 | 13.00 | 6.50 | 7.76x




3 GGX Microfacet BSDF Model

3.1 Feature Description

In this section, we aim to use the GGX Microfacet BSDF model to accurately model transmission
through a rough refractive boundary. In Assignment 2, we already implemented the Beckmann
distribution function to accomplish this, however the GGX microfacet BSDF is empirically able
to provide a closer match for certain surfaces, allowing for high-fidelity and realistic rendering of
rough materials at various viewing angles. GGX results in a softer highlight that falls off gradually,
with improved importance sampling and better energy preservation.

BSDF models: A BSDF model (Bidirectional Scattering Distribution Function) describes how
light scatters from a surface, and it is defined as the ratio of scattered radiance in direction w,
caused by unit irradiance from direction w;, with respect to the local surface normal nj.

Microfacet models: In microfacet models, the tiny microscopic details of a rough surface are
replaced by a simplified macro-level model that matches the scattering distribution of the micro-
surface. Since the details of the microfacet model are too small to see directly, only the overall
directional scattering pattern matters. Typically, wave effects are ignored and single scattering is
assumed.

Parameterizing microfacet models: The microfacet normal distribution D(m), expressed as
a density of normals per infinitesimal solid angle, describes the distribution of surface normals m
over the microsurface. The bidirectional shadowing-masking function G(w;,w,, m) describes what
fraction of the microsurface with normal m is visible in directions w; and w,. Together, these
equations parameterize a microfacet model.

3.2 Implementation Details

Beckmann Distribution: The Beckmann distribution, which we implemented in class, is defined
as follows, where we use a rational approximation for the G term, and «y is a width parameter:
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GGX Distribution: The GGX distribution, which we implement here, is defined as follows, where
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Here, D(m)|m - n| are sampled as follows:
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Implementation: Beckmann and GGX have almost identical formulations except for the mathe-
matical definitions of D and G1, so my implementation directly follows the Beckmann class except
for the substitutions shown above.

First, we sample normals from the GGX distribution by computing € and ¢ from a new 2D sample.
Since the distribution directly samples the normal and not the scattered direction, we must apply
a change of variables. Finally, we implement the eval method by calculating the Fresnel term as in
Beckmann, as well as the shadow/masking term following the math above. The x* term is simply
to make sure the scattered direction is in the same hemisphere as the surface normal.

3.3 Results

Correctness: To verify the correctness of my microfacet model, I used the script src/03_sample_test.cpp
from Assignment 2 to visualize the sampled PDF. My results are shown below, in comparison to
Beckmann and Blinn-Phong. Here, both Beckmann and Blinn-Phong use parameters o = 0.3,

n = 0.34, and extinction coefficient 3.9, while Blinn-Phong uses exponent 10:

Sampled PDF

GGX

Beckmann

Blinn-Phong

We can see the similarities between GGX and Beckmann. 03_sample_test.cpp also reports the



following, showing that the PDFs and samples are valid:

Appearance: In the following images, we smoothly blend between a Lambertian sphere with
albedo 0.8 and a Beckmann/GGX sphere with albedo 0.8, o 0.1, n 0.05, and extinction coefficient
3.9. These images are rendered using path tracing NEE at 64 samples per pixel:

GGX

Beckmann

We can see that GGX is better suited for modeling rough surfaces such as unpolished metal, while
Beckmann is better suited for modeling glossy and polished surfaces.



4 Bidirectional Path Tracing

4.1 Feature Description

In this section, we aim to implement bidirectional path tracing as a generalization of the standard
path tracing algorithm. BDPT constructs paths that start from the camera on one end and the
light source on the other end, connecting them in the middle with a visibility ray. It better handles
difficult lighting conditions and reduces the variance of the image. Unlike photon mapping, BDPT
is unbiased and does not blur the scene illumination.

Camera and Light Subpaths: The core idea of BDPT is to generate camera and light subpaths
by sampling an initial direction from either the camera or light, and shooting rays recursively out
from them. Once this is done to form a light subpath of length s and a camera subpath of length
t, we can consider all s -t ways to connect the camera subpath to the light subpath using an
intermediate visibility ray. If there are no occlusions along the ray, then light can freely flow along
the light subpath, across the visibility ray, and along the camera subpath:

<3

Difficult Paths: BDPT is particularly useful for difficult paths like these, where a randomly
sampled ray from the camera has a very small probability of reaching the light source. In these
cases, standard path tracing is inefficient as most rays carry zero radiance:

Reusing Paths: BDPT allows us to reuse the camera and light subpaths on each iteration. Once
a light path of length s and a camera path of length ¢ are constructed, then a large number of
unique paths can be constructed between them, with length ranging from 2 up to s + ¢. This
strategy allows us to amortize the cost of recursive raytracing to compute paths, making the most
expensive part of BDPT the visibility test required to connect each pair of subpaths.

Multiple Importance Sampling: BDPT also allows us to sample the same path using multiple
strategies. For any path containing n vertices, it is possible to sample that same path in n+1 ways
using BDPT. Here, red represents the camera subpath, green represents the light subpath, and the



grey line represents the visibility ray connecting the two:
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4.2 Implementation Detalils

Integrator Framework: Our implementation of BDPT follows from the general parallel integrator
implementation that we presented earlier in this report. We split the image into 16x16 tiles and
for each tile in parallel, we construct a new sampler, compute sample bounds, and loop over the
pixels in the tile to render them.

Assumptions: Throughout our implementation, we assume that the camera is a pinhole perspec-
tive camera, so there is no need to consider ¢ = 0 paths where the light path extends directly
into the camera. Due to the difficulty of implementing and sampling alternative light sources, we
also assume that the only lighting comes from diffuse area lights. We assume that there are no
participating media.

Tracing Camera and Light Subpaths: To trace camera and light subpaths, we define two
helper functions generateCameraSubpath and generateLightSubpath to sample an initial ray.
For the camera subpath, we simply use the existing camera.generateRay to sample an initial ray
for the camera subpath and compute the corresponding PDF. We also evaluate the importance
emitted along the sampled ray. For the light subpath, we implemented a new function sample Le
which samples a uniformly random light source in the scene, samples a random location on that
light source, then samples a cosine-weighted outgoing direction with respect to the surface normal
at the samled point. The corresponding PDF is the product of the PDFs for each of these three
sampling operations. We also evaluate the radiance emitted along the sampled ray.

Vertex Abstraction: To aid the rest of our BDPT implementation, we define a Vertex abstrac-
tion which stores a point of interaction along some subpath. These points of interaction could
include geometry intersections where we need to evaluate BRDFs, camera or light endpoints, or
intersections with participating media. Each vertex contains fields for the position Vec3f p, geo-
metric normal Vec3f n, the current throughput Color3f beta, the forward and reverse PDF values
float pdfFwd and float pdfRev, as well as any data associated with surface or other interactions.

Random Walk: After sampling the initial importance/radiance values, generating the initial
rays for the camera and light subpaths, and creating initial vertices on both subpaths, both
generateCameraSubpath and generateLightSubpath call a helper function randomWalk which
iteratively traces rays and generates new vertices on the given path. This function recursively



traces a ray and upon any surface interaction, it initializes a Vertex with surface intersection in-
formation and samples the BSDF at the current vertex, storing forward and reverse probabilities
at the current vertex and scaling the throughput value beta accordingly.

Random Walk: Specular Interactions Because our original implementation of DIRT treats
specular and non-specular interactions differently, we must include two cases in our code to account
for this. In the case that sampling the BSDF at the current vertex results in a specular interaction,
we scale beta by the specular attenuation and simply set the next ray to the scattered direction. In
this case, both the forward and reverse PDF's are 0 to represent that the BSDF is parameterized by
a Dirac delta. In the non-specular case, we evaluate the BSDF at the sampled direction and scale
the forward and reverse PDF's by the corresponding forward and backwards PDFs. We then scale
beta by the BRDF value divided by the forward PDF. After all of these steps are complete, we
spawn the next ray using either the scattered direction from a specular interaction or the sampled
scattering direction from a non-specular interaction.

Connecting Subpaths Into Full Paths: After camera and light subpaths are sampled using the
generateCameraSubpath, generatelightSubpath, and randomWalk helper functions, we finally
consider all possible combinations of s and ¢ and connect these paths together. This is done in a
separate helper function called connectBDPT, which given a light subpath, camera subpath, and
values of s and t, computes the radiance contribution of that particular path. We consider several
special cases in this function:

e Case 1: In the s = 0 case, the light subpath is empty and we interpret the camera subpath
as a complete path that connects directly to the light. This is equivalent to the path tracing
setting. Here, if the last endpoint of the camera subpath is a light source, the radiance
contribution is simply the amount of emitted radiance scaled by the beta value of the last
vertex on the camera subpath.

e Case 2: In the t = 1 case, the camera subpath has one node on it and we interpret the light
subpath as a nearly complete path that connects directly to a point sampled on the camera.
Here, the radiance contribution is the amount of importance emitted by the camera, divided
by the PDF of sampling the given outgoing ray from the camera, times the beta value of the
last vertex on the light subpath as well as the BRDF value of that vertex with respect to its
predecessor on the light subpath and its successor which is the camera node.

e Case 3: In the s = 1 case, the light subpath has one node on it and we interpret the camera
subpath as a nearly complete path that connects directly to a point sampled on the light.
This is equivalent to the next-event estimation setting. Here, if the last endpoint of the
camera subpath is able to connect to a light source, the radiance contribution is simply the
amount of radiance emitted by the light, divided by the PDF of sampling the given outgoing
ray from the light, times the beta value of the last vertex on the camera subpath as well as
the BRDF value of that vertex with respect to its predecessor on the camera subpath and its
successor which is the light source.

e Case 4: For all other cases, we have at least that s > 2 and ¢ > 2. In this case, we connect the
two subpaths normally. If the two endpoints of the camera and light subpaths are mutually
visible from each other, the radiance contribution is equal to the beta value of the last vertex
on the camera subpath, times the beta value of the last vertex on the light subpath, a BRDF
evaluation between the next-to-last vertex on the camera subpath, last vertex on the camera
subpath, and last vertex on the light subpath, as well as a BRDF evaluation between the last
vertex on the camera subpath, last vertex on the light subpath, and the next-to-last vertex
on the light subpath.
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After evaluating these four special cases, our connectBDPT function computes the MIS weight for
the given connection strategies using cached pdfFwd and pdfRev values in the vertices.

Visibility Testing: In each of the four cases above, we needed to evaluate whether the last vertex
on the camera subpath and the last vertex on the light subpath were mutually visible. To make this
task easier, we define a helper class VisibilityTester that simply takes in two Vertex objects
representing a point on some subpath. To evaluate the visibility tester, we simply spawn a ray
starting at the first vertex with an upper time bound just before the second vertex, to see if there
are an occluding objects in between. If so, that particular path should not be considered when
computing the final contribution of that s and ¢ combination in connectBDPT.

Multiple Importance Sampling: Finally, we perform multiple importance sampling following
the structure in PBRT in a function called MISWeight. To make the code cleaner, this section makes
use of a helper class called ScopedAssignment which temporarily performs a variable assignment
while the ScopedAssignment is in scope, then reverts that variable assignment once the destructor
is called. MISWeight iterates over all alternative strategies that could have hypothetically generated
the same path through the scene, but with an earlier or later crossover point between the camera
and light subpaths. Using the balance heuristic, it reweights the path contribution accordingly.
Since my structure for this part of the code follows PBRT almost exactly, please refer to PBRT for
an extended explanation for how MIS is implemented for BDPT.

4.3 Results

To evaluate the results of my BDPT implementation with MIS, I compare it to implementations
from earlier homeworks such as regular path tracing and path tracing with next event estimation.
All results in this section use an independent sampler.

NEE vs. BDPT on Cornell Box: Shown on the next page is the cornell-box scene rendered
using path tracing with NEE, compared against BDPT with MIS:

While the results are generally good, we can see that there are some subtle differences between
NEE and BDPT, specifically in the handling of specular materials as reflection and refraction do
not seem to be well handled. This is partially due to how DIRT handles these separately from other
types of surface interactions, making it difficult to case on in the code. The green and red colors
within the spherical shadowes of the NEE image are much harder to see in the BDPT image, the
back wall and ceiling are slightly darker, and the reflection of the glass ball is black in the BDPT
image but red in the NEE image.

During my final presentation to the class, I originally presented some results where the BDPT
results looked exactly the same as NEE results, although at a much higher noise level than seen
here. Unfortunately, I later found out during some debugging that my code was effectively setting
the MIS weights to 0 for all cases where s # 0, s # 1, or t # 1, making it equivalent to NEE. Since
those results were buggy and took a longer time to render than NEE alone, I chose not to include
them in my final report.
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NEE 256 spp (105.00s) BDPT 128 spp (26.50s)

NEE 256 spp (105.00s) BDPT 32 spp (7.00s)

NEE 256 spp (105.00s) BDPT 8 spp (1.75s)




Shown below are the contributions from each (s,t) path type in BDPT, rendered at 32 spp. Here,
we can clearly see that different types of paths are best at capturing different effects in the final

image:

(0,2)

Other Scenes and Materials: Shown below are some results on other scenes and materials in
comparison to the reference provided in class. Overall, the results of BDPT are a little darker than
the reference and seem to miss some kinds of light interactions. My hypothesis is that due to how
DIRT separately handles specular and non-specular interactions, certain classes of interactions are
getting missed, causing those light paths to contribute zero radiance to the scene instead of what
they are supposed to:

13



beckmann.json Reference

BDPT 32 spp (13.00s)

blinn-phong.json Reference

BDPT 32 spp (13.50s)




glossy-cornell-box.json Reference BDPT 25 spp (8.00s)




