Hulk Compiler Report (15-411 F21)

Jeff Tan (jefftan), Rachel Yuan (rachely)

December 15, 2021

1 Introduction

In this report, we discuss our findings from implementing the -01 and --unsafe flags for our
compiler targeting C0, including alias analysis for our advanced optimization.

1.1 Compiler structure

Our compiler follows the same overall structure as Lab 4, with minimal changes to the parser and
front-end. We begin by parsing the CO source into a typed parsetree using an LR(1) parser generated
by Menhir. Then, we perform typechecking on this tree and calculate datatype information such as
size and struct offsets. Next, we translate the parsetree to an untyped AST, add size information as
annotations, nd perform some simple elaboration steps such as converting for loops to while loops
and elaborating short-circuit boolean operators to ternaries. Finally, we perform code generating
using a convenient munch algorithm to flatten the reduced AST into basic instruction sequences,
which are manipulated throughout the optimization process.

To facilitate various optimizations, we implemented several analysis passes to transform the code
between representations:

e Control flow graph (cfg.ml)
e Dataflow framework (dataflow.ml)
e Dominator tree (dominance.ml)

e Static single assignment (ssa.ml)

We also implemented many optimization passes. Most of these act on the control flow graph (CFG),
except for some global optimization passes such as function inlining and tail call optimization:

e Local copy propagation (copyprop-local_ssa.ml)

e Local constant propagation (constprop_local_ssa.ml)
e Constant folding (constfold_ssa.ml)

e (Agressive) Dead code elimination (adce.ml / dce.ml)

e Register allocation and coalescing (regalloc.ml)

e Peephole optimizations (peephole_ssa.ml)

e Integer divide strength reduction (reducediv_ssa.ml)
e Partial redundancy elimination (pre.ml)

e Function inlining (function_inlining.ml)

e Tail call optimization (tail_call.ml)

e Miscellaneous improvements

e Branch fallthrough

e (alculating memory addresses using lea

We also chose to implement alias analysis, of which we have two types. The flow-insensitive
Steensgaard’s algorithm uses a union-find data structure to find points-to relationships between
temps and variables. We also use flow-sensitive dataflow analysis to find what variables and temps
possibly alias each other at each line in the program:

e Steensgaard’s algorithm (point_to.ml)

e Dataflow-based alias analysis (pointer_analysis.ml)

2 Frontend

In general, we made very few changes to our compiler frontend. The biggest change was imple-
menting the --unsafe flag which removes all error checks from the codegen, including memory
null checks and array bounds check, as well as bounds checks for left and right shift. Under unsafe
mode, we also no longer need to store the length of an array after allocation, we can simply return
the result of calloc directly.

During initial code generation, we focused much more heavily on simplicity over performance,
leaving optimizations to be performed in future passes. Our codegen almost exactly follows the
dynamic semantics of CO: for example, we generate a new temporary variable for every argument
of a binop or function call. While this makes our frontend easier to implement and verify, it is also
wasteful and increases our compiler runtime by creating extra work for the optimization passes.

2.1 Supporting partial redundancy elimination

To better support partial redundancy elimination (PRE) and loop-invariant code motion, we also
duplicated the loop guard in our while loop codegen. Shown below is a comparison of our previous
and current codegen:

Previous Codegen Current Codegen

{ Previous Block J [Previous Block]
True
True
[Loop Body]Q Loop Guard] [Loop Guard 1]—'[Loop Body]
\\
False False False <) True

‘ Next Block] [Next Block }—{ Loop Guard 2]

Under our previous codegen, PRE was not very effective because the algorithm only moves state-
ments to a point where they are guaranteed to be executed regardless of what path is taken to the
exit. We cannot hoist loop-invariant statements outside the loop body and before the loop guard,
as these statements might not be computed if the loop guard immediately returns false. Our cur-
rent codegen fixes this issue by duplicating the loop guard, allowing loopinvariant statements to be
placed between Loop Guard 1 and Loop Body. The loop is guaranteed to run once upon reaching
this point, so loop-invariant statements can be safely hoisted out. Although this slightly increases
code size by generating the loop guard twice, it is well worth it to enable PRE.

3 Optimization Passes

Our optimization passes are broadly defined in the optimization.ml file. We first perform tail call
optimization and function call inlining on the abstract assembly outputted by the parser. Then, we
convert each function’s assembly to a control-flow graph (CFG) and convert the CFGs to chordal
static-single assignment (SSA). We run our optimizations in the following order:

1) Tail call optimization (global)

\)

Function call inlining (global)

w

Local constant propagation

W

Constant folding

at

Local copy propagation

(=)

Division reduction

~J

Peephole optimizations

oo

Aggressive dead code elimination

9) Coalescing CFG blocks

10) Partial redundancy elimination

)
)
)
)
)
)
)
)
)
)

These optimizations are repeated in a loop until the number of instructions converges and further
optimizations have no additional effect. We also have a timeout to stop the compiler if compilation
takes too long. After optimization, we pass the optimized CFG to liveness analysis and register
allocation, then unravel the CFG back into a list of abstract assembly instructions to be converted
to x86 assembly.

3.1 Constant/Copy Propagation and Constant Folding

We implement local constant and copy propagation by iterating through each basic block and keep-
ing a local context that maps destination variables and temps to the source variables or constants
that they refer to. First, we use information from the context to populate the right-hand side of
each instruction (moves, binops, comparisons, function calls). For example, the line x1<-x2 with
x2:=6 in the context becomes x1<-6. If the instruction assigns a variable, temp, or constant to
another variable or temp, we add this assignment to the context and update the instruction. In
this case, we add x1:=6 to the context and change the instruction to x1<-6. Note that we do not
remove any instructions from the code during constant and copy propagation: these are cleaned
up later by (aggressive) dead code elimination (ADCE).

After constant propagation, we do constant folding. If both sides of a binop or comparison are
constants, we evaluate the expression and replace the binop or comparison with a move. We
replace any conditional jumps with deterministic jumps if we know the result of the condition, and
if we know that there will be a division error, we remove the invalid expression and explicitly raise
a floating point exception. Finally, we clean the CFG by removing unreasonable instructions and
updating predecessor and successor blocks as necessary.

These optimizations significantly reduce the number of binops and comparisons, and provide a
baseline so that we can remove unnecessary moves later on through dead code elimination. Given
that constant propagation, copy propagation, and constant folding run in linear time, we also run
these optimizations under the -00 optimization setting.

These optimizations also have the potential to reduce register pressure during register allocation,
by eliminating the excess number of temps created during codegen. This significantly reduces the
runtime of our register allocator by decreasing the size of our interference graph, as building the
interference graph is O(n?).

Without dead code elimination however, constant and copy propagation increase register pressure,
as propagation does not remove the unnecessary moves and increases the live range of variables
and temps. We get a much worse speedup overall with just propagation and folding. This is
demonstrated further below.

3.2 (Aggressive) Dead Code Elimination

We implement both aggressive and standard dead code elimination based on the Mark and Sweep
algorithm in Section 10.2.1 of the Cooper book. Dead code elimination uses the same algorithm as
ADCE, but it marks all conditional jumps as critical, and since no jumps are removed, there is no
need to find the reverse dominance frontier.

Dead code elimination is used in place of aggressive dead code elimination if a function has an
infinite loop. In this case, there are no ways to reach the exit, and thus, there is no way to form the
reverse CFG. In this event, aggressive dead code elimination throws an exception and we default
to dead code elimination.

Aggressive dead code elimination significantly improves the quality of our compiler by removing
dead code, as well as cleaning up after our other local optimizations. While ADCE may remove
some loop blocks that have no effect on the program output, there are many moves of the form
(y<-x; z<-y) that could be coalesced together into (z<-x). Propagation and folding help to merge
these moves and make them redundant, and then ADCE actually removes them from the program.

These effects are demonstrated below on a subset of tests, run on the lab 5 benchmarking submis-
sion. All results were run with register allocation and some basic peepholes that are built into the
compiler (e.g. fallthrough, lea, etc.). These optimizations were only applied once, rather than in
multiple iteration. The results are for safe mode:

Propagation/Folding and ADCE on Speedup

@ Regalloc [Regalloc + Prop/Fold Regalloc + ADCE [Regalloc + Prop/Fold + ADCE
1.25E+00
1.00E+00
[%2]
o
o
&)
= 7.50E-01
[8]
o
(@]
B 5.00E-01
N
©
£
S 2.50E-01
0.00E+00
albert arrays_loops daisy loooops mist
Test Cases

Aggressive dead code elimination shows tremendous improvement in the mist.14 benchmark, but
only when combined with propagation and folding. This test case contains a loop on lines 23 to 27
that has no effect on the result of the mist function. However, we only know after constant propa-
gation that this loop has no effect, as the calculation of i/2 becomes (t1<-i; t2<-2; t3<-t1/t2)
as a result of codegen. Aggressive dead code elimination then removes this loop.

In addition to speedup, we get significant reductions in code size due to a combination of prop-
agation/folding and ADCE. Propagation and folding alone actually increases the code size, since
these local optimizations do not actually eliminate any instructions. ADCE alone has significant
impacts on albert.14 and daisy.14, and smaller impacts on the other tests. However, we see the
best overall impact with propagation/folding and ADCE in combination:

Propagation/Folding and ADCE on Code Size
B Regalloc [Regalloc + Prop/Fold Regalloc + ADCE [Regalloc + Prop/Fold + ADCE
1.25E+00

1.00E+00
7.50E-01

5.00E-01

Normalized Clock Cycles

2.50E-01

0.00E+00

albert arrays_loops daisy loooops mat mist

Test Cases

3.3 Peephole Optimizations in SSA

Our compiler implements a number of local peephole optimizations within basic blocks. Each
peephole optimization acts on a single instruction at a time, and we maintain a local context that
maps each variable to the expression that it currently holds.

3.3.1 Constant Regrouping and Algebraic Simplification

For all associative binary operations, we use the associative property to regroup constant expressions
and achieve better constant folding. For example, if (x1<-c1+x2) and (x2<-c2+y2), we can rewrite
x1 as (c1+(c2+y2)=(c1+c2)+y2) and perform constant folding to eliminate an addition operation.
The same can be done for multiplication, and, or, and xor. We also simplify algebraic expressions
when possible, for example by eliminating addition or subtraction by 0, subtraction by yourself (e.g.
x-x), multiplication by -1, 0, or 1, as well as shifts by 0. Many of these peephole optimizations are
uncovered after applying other optimizations such as copy propagation and constant folding.

Similar to the constant folding pass, this optimization does not actually remove any instructions
from the abstract assembly, which we leave to ADCE. We simply perform a lookup in the local
context to identify the underlying expression of the left and right arguments, and replace the
operands of the current binop if eligible.

Below, we show the impact of running our fully iterated optimization passes in unsafe mode with
and without algebraic regrouping. We perform slightly better on some tests such as julia.1l4 and
leonardo.14, and significantly better on jen.14 which has a significant amount of arithmetic com-
putation. Unfortunately, constant grouping and simplification also slightly increases the runtime
on janos.l4 and mist.14, possibly due to poorer register allocation from increased live ranges of
variables. Despite this, we believe that the positive impacts are worth it.

Algebraic Simplification on Speedup
@ Wwithout Regrouping [With Regrouping
1.25E+00

1.00E+00
7.50E-01

5.00E-01

Normalized Clock Cycles

2.50E-01

0.00E+00
albert daisy danny janos jen julia leonardo mist

Test Case

3.3.2 Strength Reduction

We also use strength reduction to replace expensive operations such as multiplication and division
with cheaper operations when possible. We use LEA to multiply by certain supported constants
(1, 2, 3, 4, 5, 8, 9), we use left shift to multiply by powers of two, and we also implement the
algorithm described in Granlund 91 to replace division by constants with multiplication and other
cheap operations. This optimization brings significant performance improvement, especially when
the expensive instructions are in an inner loop or on some kind of critical path.

Shown below is the result of locally running our fully iterated optimization passes in unsafe mode,
with and without strength reduction, where we omit any benchmarks where there was no difference.
We perform slightly better on some benchmarks like leonardo.14 and ncik.14, and significantly
better on julia.l4 which performs division in an inner loop. As Granlund 91 creates many more
temporary variables than the division it is replacing, we may get worse performance if strength
reudction increases register pressure and causes spilling.

Strength Reduction on Speedup

B Without Reduction [l With Reduction

1.25E+00
1.00E+00
7.50E-01

5.00E-01

Normalized Clock Cycles

2.50E-01

0.00E+00
daisy danny frank janos julia leonardo mist ncik ronald

Test Case

3.3.3 LEA Simplification

Finally, we perform a number of simpliications on LEA instructions to reduce the cost and register
requirements of address computations. As our codegen exactly follows the dynamic semantics of
C0, performing a constant index array access such as (a[5]) without optimization requires us to
store 4 into a temp, use a LEA instruction to store the address (a + 5 * 4) into a temp, and
dereference this temp. These three steps can be combined into a single step that directly uses
(20(a)) as a memory operand.

When the base of a LEA expression is another LEA expression with no index component, we
can merge the two expressions together: for example, (x1<-lea 01(x2,il1,s1)) and (x1<-lea
02(b2)) becomes (x1<-lea ol+02(b2,i1,s1)). When there are any constant terms inside a LEA
expression, we can eliminate those and combine them into the offset term: for example, (lea
4(b,3,8)) is equivalent to (lea 4+3x8(b)) or (lea 28(b)). We also merge LEA instructions into
moves when possible: for example, (x1<-mem(x2)) and (x2<-lea 02(b2)) is equivalent to directly
accessing memory using a memory operand, (x1<-mem 02(b2)).

Note that LEA simplification provides much less benefit to our compiler in unsafe mode, as we did
not implement redundant safety check elimination and must evaluate the relevant LEA expressions
anyways to check them against NULL.

Shown below is the result of our running our full iterated optimization passes with and without
LEA simplification, where we omit any benchmarks where there was no difference. We perform
slightly better on some benchmarks like albert.14 and daisy.14, where there is a high intensity
of memory accesses.

LEA Simplification on Speedup
B Wwithout Simplification [l With Simplification
1.00E+00
7.50E-01

5.00E-01

2.50E-01

Normalized Clock Cycles

0.00E+00
albert daisy danny frank georgy janos mist monica yyb

Test Case

3.4 Register Allocation

We use the SSA-based register allocator based on chordal graphs that was presented in lecture. In
this algorithm, we use dataflow to compute liveness, build an interference graph, find the simpli-
cial elimination ordering (SEO) using the maximum cardinality search (MCS) algorithm, perform
prespilling, and finally determine a greedy coloring and perform coalescing. After mapping each
variable and temp to an integer color, we assign each color to a register or a slot on the stack,
where lower-valued colors are more frequently used and thus assigned to registers. Finally, we filter
out any redundant moves that may have resulted from two variables being mapped to the same
register.

3.4.1 Reserved Registers

We reserve the two registers RBP and R13 for use during instruction selection in order to handle
spilled registers. Originally, in our Lab 4 compiler, we had reserved many more registers including
the use of RBP as a base pointer for the stack, but for this lab we tried hard to minimize the
number of registers we reserved as much as possible to maximize the effectiveness of our register
allocator.

Below, we show the effect of reserving two registers vs. reserving five registers on speedup. Each
additional register we reserved gave a significant performance penalty, especially on benchmarks
with an already-high register pressure such as arrays_and loops.14, jack.1l4, julia.l4, due to
the cost of spilling and reloading values from memory. In fact, when just 3 additional registers
are reserved, julia.l4 takes twice as long. However, on tests where there are enough registers
anyways to accommodate all the temps in the program, reserving additional registers has no effect:

Reserving Extra Registers on Speedup

B TwoReserved [Five Reserved

2.50E+00
2.00E+00
1.50E+00
1.00E+00
5.00E-01

0.00E+00
albert fannkuch julia leonardo mat mist ncik pierre ronald

3.4.2 Spill Cost Estimation

In order to break ties during the maximum cardinality search (MCS) algorithm, we use heuristics
to estimate the spill cost of each vertex. As we did not implement a loop analysis framework, we
were not able to consider the loop depth as part of our heuristic. Rather, we approximated the
spill cost of each temp by the number of uses it has, measured by counting the number of times
that each variable is defined or used at each line in liveness. This way, variables that are more
commonly used are more likely to be placed early in the MCS algorithm, meaning that they are
more likely to be assigned to registers. Considering loop depth or real-world usage statistics would
likely improve the quality of our spill cost estimation.

3.4.3 Prespilling

We also use prespilling to improve the quality of our spills with the maximal clique algorithm.
We iterate through the simplicial elimination order (SEO) and for each vertex, we form a clique
conisting of that vertex and any neighbors of that vertex which came beforehand in the SEO
ordering. After computing the result of the maximal clique algorithm, we count the number of
cliques that each vertex is in and repeatedly spill the vertex that is in the most cliques until all
cliques have fewer than K nodes, where K is the number of available registers for coloring. At this
point, the resulting graph is guaranteed to be colorable with registers only. Once we perform a
greedy coloring for these vertices, the prespilled vertices are assigned to slots on the stack.

3.4.4 Coalescing

Finally, we implement register coalescing to merge together move-related edges that do not oth-
erwise interfere with each other in the interference graph. Coalescing helps ensure that as many

10

variables and temps are allocated to registers as possible, and helps to reduce spilling and reduce
the number of redundant moves. To perform coalescing, we pick two vertices that are lined by a
move-related edge and search for a register that neither vertex is adjacent to in the interference
graph. To avoid creating a spill due to coalescing, we will only coalesce two vertices into a register,
not a stack slot. This means that coalescing is less effective in programs with a lot of register
pressure, as it is unlikely that there is an available register that neither vertex shares.

3.4.5 Register Allocation Results

Shown below is a summary of the output of our register allocator:

Test Case Temps / Vars | Coalesced | Spilled
albert 1463 43 92
arrays_loops 296 28 15
daisy 2292 139 153
danny 1477 136 0
fannkuch 264 32 2
frank 409 23 0
georgy 1438 118 0
jack 795 48 0
janos 298 33 0
jen 191 52 0
julia 451 46 61
leonardo 90 8 0
loooops 6 21 0
mat 253 25 0
mist 185 17 0
monica 83 8 0
ncik 620 55 58
pierre 116 25 0
ronald 411 33 89
yyb 343 36 0

3.5 Function Inlining and Tail Call Optimization

Function inlining is one of two global optimizations we implement, and for simplicity we directly
perform it on the abstract assembly before converting it to a control-flow graph (CFG). This allows
us to simply replace the Call instruction with the inlined function’s abstract assembly, without the
hassle of renaming labels, dealing with branches in a CFG, and maintaining SSA. The only thing
we have to do is to rename all the variables by prepending the name of the function to each inlined
variable. At the beginning and end of the function call, we also generate instructions that move
everything into the function arguments, and move the end result into the function’s destination
instead of the %rax register.

We developed several function inlining heuristics to decide which functions to inline. We always
choose to inline functions that are only called once, as this will almost always reduce the code
size. We also choose to inline functions that are sufficiently small but used quite often (abstract
assembly is less than 30 lines), as doing so reduces the overhead of making a function call.

11

Similar to function inlining, we do tail call optimization directly on the list of abstract assembly
instructions before generating a CFG and converting to SSA. This allows tail call optimized func-
tions to also be inlined in the next step. We only use simple tail call optimization, where the
function must call itself at exactly the last line in the assembly. To perform tail call optimization,
we move all function arguments into the appropriate variables and replace the call with a jump to
the beginning of the function.

Below, we demonstrate the effects of function inlining, which significantly improves speedups across
a wide range of test cases. Aggressive function inlining allows local optimizations to act across
functions, which uncovers many further optimizations. Although aggressive inlining may cause
an increase in register pressure, this seems to only be a concern in specific benchmarks with an
already-high register pressure, for which inlining can cause a critical variable to spill and greatly
decrease the code’s performance. All runs below include copy and constant propagation, aggressive
dead code elimination, and register allocation, which are applied after function inlining.

Function inlining helps with test cases like albert .14 and frank.14 where there are a large number
of function calls. Tail call optimization is particularly beneficial in pierre.14 which contains the
tail call optimizable function pow. As pow is a small function and only called three times, we
see additional benefits when tail call optimization is combined with function inlining. Tail call
optimization also sees a benefit in julia.1l4 as the recursive Collatz function is tail call optimizable.
As we do not have basic accumulation, we do not have the means to transform functions that are
very close to tail call optimizable, which would have benefited test cases such as monica.1l4.

Function Inlining and Tail Call Optimization on Speedup

B Without Inlining + TCO [With Inlining + TCO

1.25E+00
1.00E+00
[%2]
Q
Q 7.50E-01
(6]
S
Re} 5.00E-01
(@]
B
N 2.50E-01
(0]
£
<23 0.00E+00
L o J B 5\ % o & @ (S ©
S S S S S & & L >
I A & & o(\é CFE S s
7 @
@é@
Test Cases

3.6 Code Layout and Improved x86 Codegen

Our compiler uses a variety of strategies to improve the generation of x86 code from abstract
assembly. It is difficult to judge the effectiveness of these optimizations as they were built into the
compiler. For example, we use LEA to calculate array and struct offsets instead of Mul and Add,
which we were using in Lab 4. We also use liveness analysis information from register allocation to

12

calculate which registers must be pushed onto the stack for each function call, instead of pushing
all caller-saved registers. Both of these optimizations had performance benefits on a large portion
of the test programs.

Improving our code layout and implementing fallthrough was critical to achieving good performance
from our compiler. By default, our CFG inserts jumps at the end of every basic block, even if the
jump target immediately follows in the code. To improve this, we ordered our basic blocks such
that “branch not taken” is the default path at every branch, and made this the fallthrough case
at every branch. Doing so significantly improves the CPU’s ability to prefetch instructions and
improves locality of the instruction cache.

Shown below are the speedups we achieved in safe mode from implementing fallthrough. Adding
fallthrough to our compiler resulted in nearly 40% performance increase for many benchmarks.
The results are especially noticeable in safe mode, as memory and null checks add a lot of basic
blocks and jumps to the program.

Fallthrough on Speedup
@ Wwithout Fallthrough [With Fallthrough
1.25E+00

1.00E+00
7.50E-01
5.00E-01
2.50E-01

0.00E+00

We also experimented with improving code alignment for branch targets and function calls using
assembly directives such as .align. Our results varied for different programs. On some programs,
improving code alignment gave better performance, possibly by allowing the instructions of an
inner loop to fit in a single cache line. On other programs, padding the code with nop’s increased
the code size and gave worse performance, possibly by reducing locality or causing thrashing in the
instruction cache. As we did not implement loop analysis, a better approach may have been to only
align branch targets that are frequently visited, such as a loop guard or the start of a frequently
called function.

3.7 Partial Redundancy Elimination

We implemented the partial redundancy elimination (PRE) algorithm described in Section 9.5 of
the Dragon Book. PRE performs the dual tasks of common subexpression elimination and loop-

13

invariant code motion, and aims to simplify the code by moving expressions around to a single
optimal point of computation. As discussed in the Frontend section, we split critical edges and
changed our loop generation code to create a location where redundant expressions could be placed.

PRE would sometimes interact with our local optimizations by moving expressions out of a basic
block before they had the chance to participate in local optimizations that would have improved
code quality. For this reason, we first perform a round of iterated local optimizations without PRE,
then we perform another round of iterated optimization with PRE.

We show the impacts of PRE below. PRE significantly improves runtime for some tests such
as arrays_and_loops.1l4 and julia.l4, which both contain redundant expressions in loops that
can be hoisted out. However, while PRE can reduce the number of overall computations, splitting
critical edges can also increase the number of jumps, which may cancel out the optimization benefit
from reducing computations. For nick.14, there are not many redundant expressions, but many
loops, so applying PRE actually increases the runtime.

Partial Redundancy Elimination on Speedup

B Without PRE [l With PRE

1.25E+00
1.00E+00
[%2]
2
9 7.50E-01
O
S
o 5.00E-01
(@]
B
N 2.50E-01
(0]
£
ZO 0.00E+00
\Q;Q 'Q.\\(b
Test Case

3.8 Iterated Optimization Passes

We run all the previously described optimization passes in a loop until the number of instructions
converges. This allows optimizations to uncover each other until no more progress is possible.
Below, we show the number of instructions of each type in the jen.14 benchmark after each round
of simplification. Each round of optimization continues to improve the quality of the code, with
diminishing returns as the number of rounds increases:

14

Round | Add | And | Call | Cmp | Jump | JumpC | JumpZ | Mov | Mul | Or | Phi | Sub | Xor
SSA 280 | 217 82 | 1312 | 393 175 | 5038 | 198 | 177 | 2484 | 1094 | 202
Round 1 | 135 | 55 16 | 392 | 158 47 463 | 46 | 50 | 497 | 68 | 38

N NN DN DN

Round 2 | 41 | 19) 114 26 14 78 8 8 | 128 | 10 8
Round 3 | 40 | 18) 111 26 14 75 8 8 | 128 9 8
Round 4| 19 | 3 2 49 10 7 42 3 2 o1 3 3

4 Advanced Optimizations

In addition to the optimizations above, we also implemented pointer / alias analysis. Alias analysis
aims to determine when two pointer expressions may refer to the same memory location. Steens-
gaard’s algorithm uses a union find algorithm to find points-to relationships between variables. We
also implemented a dataflow-based algorithm based on the Appel book.

4.1 Steensgaard’s Algorithm

Steensgaard’s algorithm is a points-to-analysis algorithm that maintains a union-find graph to track
relationships between pairs of variables p and g, where a directed edge (p,q) on the graph means
that p possibly points to the location of q. Although Steensgaard’s algorithm is not as precise as
other existing pointer analysis algorithms such as Anderson’s, it is much cheaper and runs in linear
time as opposed to O(n?) for Anderson’s. Given that many programs and benchmark tests involve
large amounts of variables, it is more cost-efficient to implement a faster pointer analysis algorithm
that can run within the time bounds of our compiler.

Steensgaard’s algorithm is both flow-insensitive and field-insensitive. Flow insensitivity means that
the points-to relatoins are computed over the entire program, no matter what order the statements
are executed in, and field insensitivity means that the algorithm cannot distinguish between different
fields of a struct (e.g. p.x and p.y) even though they may never alias.

Both of these limitations reduce the quality of the outputted pointer analysis, but make it possible
to run the algorithm in linear time. For example, consider the following test program:

struct IntPtr { int f1; int* f2; }
struct IntPtr*x s = alloc(struct IntPtr);
f(s->f1, s—>f2);

Since s->f1 and s->f2 are different types, they can never alias, but according to Steensgaard’s
algorithm they are both memory locations related to s, and so our implementation of Steensgaard’s
algorithm would indicate that they may alias. Supplementing Steensgaard’s algorithm with type
information for each variable and struct field would be one way to mitigate this limitation, al-
though it would increase the runtime of the algorithm and require significant re-engineering of our
compiler’s frontend to pass around type information past typechecking.

4.1.1 Implementation Details

Our implementation of Steensgaard’s algorithm uses a hash table to represent a union find graph,
and iterates linearly through the code to compute a set of alias classes from the variables. A graph

15

is drawn between the alias classes to indicate points-to relationships between those variables. Any
time a pointer dereference, pointer copy, or pointer assignment is encountered, the relevant nodes
are joined in the points-to graph to indicate that they possibly refer to the same memory location.

Each node in the hash table is either a root node or a leaf node, with leaf nodes pointing further
along the tree to other root nodes and each root node pointing to another node further down the
tree. Conceptually, a root node represents a class of variables that may alias each other, for example
the set of variables that many point to a specific location that was calloc’ed in the heap. In order
to look up the alias class of a variable, we must simply traverse the tree until encountering a root
node, taking care to perform path compression to reduce the lookup complexity of the union find
graph.

Steensgaard’s algorithm could be further improved with type information, as C0 is a type-safe
language with no aliasing possible between values of different types.

4.1.2 Results

Our alias analysis impleentation based on Steensgaard’s algorithm produces some limited speedups
on certain benchmarks, including danny.14 on safe mode where it decreases the runtime from
3.61 - 10® cycles to 3.44 - 108 cycles. In this test case, there are a large number of moves between
memory locations and variables, and our constant and copy propagation benefit from not having
to kill all memory values at each memory operation.

5 Dataflow Based Alias Analysis

Our dataflow-based alias analysis algorithm is based on Section 17.5 of the Appel book. This
algorithm maps each variable and temp to possible points of origin, which refers to the allocated
memory location that the variable points to. These points of origin are generated by either a call
to calloc, a function return value, or from the stack frame. We then use a forward-may analysis
to find possible points of origins for all variables.

Unfortunately, this analysis is less precise than we would like it to be. Consider a function call
that we have no additional compiler-level information about. If the destination is a pointer and
the function call takes in pointers as arguments, it could be that this function call manipulates the
input pointer and returns it, or returns a newly allocated pointer. Conservatively, we must assign
the function’s return value to all input points of origin in addition to a newly alloated point of
origin, which reduces the accuracy of the analysis.

The accuracy further decreases when we consider pointers from the stack frame. Without inter-
procedural analysis, we do not know how these pointers are aliased to each other, so these pointers
must all have the same point of origin: the stack frame, and any pointer that was a function ar-
gument or dereferences a pointer from the stack must have the stack frame as a possible point of
origin. Therefore, in a function call with no allocations where all manipulated pointers are from
the stack, there is no additional benefit to alias analysis.

This algorithm can also be improved with type information. If we keep track of the types for each
variable and temp, we only need to union all points of origin of the same type for function calls, and
the stack frame pointers can be further differentiated by type. However, our current alias analysis
algorithm does not take into account types. Since we do not keep track of types, however, one
small optimization we do is to maintain a map of allocations to allocations. For example, in the

16

following program:

int** x = alloc(int*);
*x = alloc(int);
y = *X;

In line 3, rather than giving y all possible points of origin as the algorithm in the book suggests,
we know that its point of origin comes from line 2. We map the first allocation to the second
allocation, and this signals that the dereference of the first allocation has a point of origin in the
second allocation. This allows us to have some benefits of a type-based alias analysis without
actually having type information, especially in settings with nested allocations (such as within
structs).

This algorithm is costly on large programs. For each line, we potentially have to iterate through
O(n) different points of origins to find all possible points of origin for that variable, where n is the
number of lines in the program. We run through each line at most once per dataflow pass, so each
dataflow pass is O(n?), implying that the overall algorithm is O(n?).

The results of the alias analysis were integrated with constant and copy propagation (constprop_pa.ml
and copyprop-pa.ml), as well as aggressive dead code elimination (adce_pa.ml). This was tested
on the lab4-large test suite for correctness. For constant and copy propagation, the results of alias
analysis greatly helps on test cases like the following (named alias.14):

int[] A = alloc_array(int, 5);
int[] B = alloc_array(int, 5);
int sum = 0;
for (dnt i = 0; i < 5; i++) {
Ali]l = i,
B[i] = i;

sum += A[i] + B[i];
}

return sum;

Without alias analysis, we would not know if A and B are alias to each other, so A[i] must be killed
since we write to memory. However, with copy propagation, we can optimize this to calculate sum
+= i + i instead of sum += A[i] + B[i], which reduces the number of instructions needed for
dereferencing and removes the need for reading from memory to calculate sum.

Alias analysis also helps ADCE. In ADCE, all writes to memory are marked as critical instructions,
since they may modify the pointers passed in as arguments, or they might be needed in the final
result. With alias analysis, we can identify writes to memory that have no effect on the output: in
the test case above, we no longer need A and B, which can be removed in dead code elimination.

Looking at the list of instructions generated by the compiler, we can see the effect of alias analysis
together with copy propagation, constant propagation, and ADCE:

| Add | Call | Jump | JumpC | Lea | Mov
3 2 4 1 4 | 16
3 0 4 1 0 8

Without Alias Analysis
With Alias Analysis

17

Consider the test case albert.14 from the benchmark suite. If we remove the use of w[j] on line
164, w is not needed at all to calculate the final result. With alias analylsis, we are able to identify
that w is not aliased to anything else, and we can remove all writes to w, which removes a number
of loops from the output result. The impacts of this optimization are shown below:

In safe mode, there is no improvement and in fact the runtime becomes worse, as ADCE cannot
remove writes to memory in safe mode due to the possibility of error. As before, adding constant
and copy propagation without the benefit of ADCE can increase the register pressure as the live
range of temps is extended. However, in unsafe mode, there is a significant 5x speedup when we
add alias analysis, by removing the loop that modified w.

5.1 Steensgaard vs. Flow-Based Alias Analysis

Steensgaard’s algorithm has a much faster runtime than flow-based alias analysis, as its runtime is
O(n) compared to O(n3). As a result, the flow-based algorithm is too slow to run on large test cases.
For example, in the 14-basic suite, Steensgaard’s finishes while the flow-based algorithm while
the flow-based algorithm times out on bigstruct.14. For this reason, we submitted Steensgaard’s
pointer analysis. In addition, the flow-based algorithm has very little effect when few calls to
calloc are made, as explained above, whereas Steensgaard’s algorithm is able to track points-
to relationships more specifically. In programs where pointers are commonly passed in through
function calls rather than calloc’ed, we observed that Steensgaard’s algorithm was better.

6 Results

We compare our compiler denoted cOc against both gcc -00 and gcc -01, and report the runtime
of each test case in clock cycles. Our compiler is run in both safe and unsafe mode: safe mode in-
cludes runtime checks for memory safety and undefined floating-point behavior, while the ——unsafe
flag allows the compiler to ignore any exceptions that might be raised during the execution of the
program, except ones due to assert.

We also compute a benchmark score to measure how far our compiler is between gcc -00 and gcc
-01. Let s, and u. denote the average of the k-best times from our compiler in safe and unsafe
mode respectively. Let so and s; denote the times of gcc -00 in safe mode, adn let ug and u
denote the times of gcc -01 in unsafe mode. Then, our benchmark score Piiye is computed as
follows, where both P; and P, are clamped between 0 and 2.5:

Sec — 81

Puzl_; Ptirne:i

P, =1-
So — S1 ug — U1 2

We report benchmark scores for each test in the table below:

18

Name gcc -0s gcc -1s cOc -s P, | gcc -0u gcc -1u cOc -u P, | Pime
albert 12.4-10° 8.56-10° 2.34-10° 2.500 | 5.08-10 1.61-10° 2.16-10° 0.841 | 1.671
arrays_loops | 13.9-10° 8.31-10° 4.58-10° 1.667 | 7.81-10° 3.45-10° 4.38.10° 0.787 | 1.227
daisy 8.23-10° 7.04-10° 3.28-10° 2.500 | 2.35-10° 6.33-10% 1.48-10° 0.507 | 1.503
danny 3.34-10° 2.70-10° 1.12-10° 2.500 | 9.19-10% 2.71-10% 3.44-10% 0.887 | 1.694
fannkuch 57.0-10° 50.8-10° 19.1-10° 2.500 | 16.9-10° 7.30-10° 6.24-10° 1.110 | 1.805
frank 6.38-10% 4.54-10% 1.65-10% 2.500 | 2.68-10% 7.48-107 9.12-107 0.915 | 1.708
georgy 1.65-10° 1.26-10° 6.06-10% 2.500 | 6.88-10% 3.34-10% 4.74-10% 0.605 | 1.552
jack 1.53-10° 1.26-10° 5.40-10% 2.500 | 2.48-10% 8.55-107 2.57-10% 0.000 | 1.250
janos 4.01-10% 3.30-10% 1.80-10% 2.500 | 2.31-10% 1.90-10% 1.72-10% 1.439 | 1.970
jen 11.9-10° 1.78-10° 9.33-107 1.167 | 11.9-10° 1.78-10° 9.33-107 1.167 | 1.167
julia 7.92-10° 4.39-10° 4.11-10° 1.079|7.02-10° 2.96-10° 4.47-10° 0.628 | 0.854
leonardo 5.05-10° 3.32-10° 4.61-10° 0.254 |4.93-10° 3.30-10° 4.61-10° 0.196 | 0.225
loooops 10.6-10° 7.92-10° 5.48-10° 1.910 | 8.04-10° 2.53-10° 5.47-10° 0.466 | 1.188
mat 7.17-10° 6.64-10° 2.10-10° 2.500 | 1.87-10° 5.49-10% 7.31-10% 0.862 | 1.681
mist 9.44-10° 8.71-10% 2.54-10% 1.072|9.31-10° 7.49-10% 2.27-10%® 1.061 | 1.066
monica 2.37-10° 1.80-10° 1.61-10° 1.333|2.34-10° 1.78-10° 1.61-10° 1.304 | 1.318
ncik 6.83-10° 5.52-10° 3.68-10° 2.405|3.17-10° 1.15-10° 2.51-10° 0.327 | 1.366
pierre 2.58-107 1.46-107 7.76-10% 1.611 |2.45-107 1.43-10" 7.79-10% 1.638 | 1.624
ronald 2.29-10° 1.78-10° 1.42-10° 1.706 | 9.22-10® 3.96-10% 1.00-10° 0.000 | 0.853
yyb 10.6-10% 8.51-10° 2.55-10° 2.500 | 2.38-10° 7.82-10% 1.09-10° 0.807 | 1.654
Average 1.960 0.777 | 1.369

Overall, our compiler outperforms the reference compiler in safe mode with runtime checks are
enabled, and is competitive with gcc -01 on some (but not all) test cases in unsafe mode. Our
average benchmark score is 1.960 across safe tests, 0.777 across unsafe tests, and 1.369 overall.

7 Future Improvements

Based on the benchmarks, our optimizations help improve performance on most test cases, par-
ticularly improved register allocation, constant and copy propagation, constant folding, peephole
optimizations, and aggressive dead code elimination. Other optimizations such as function inlining,
tail call optimization, and PRE do little by themselves, but allow other optimizations to be far
more effective. Our compiler achieves the worst speedup on julia.l4, leonardo.l4, monica.l4,
and ronald.14.

7.1 Function Inlining Heuristics

We observed that adding function inlining made julia.l4 perform significantly worse, because we
currently choose to inline functions that are either small or called only once, with no other metrics
or heuristics to inform function inlining. Implementing loop analysis would allow us to use loop
depth as an additional heuristic to determine if a function should be inlinable or not. We could
also use the register pressure of the caller and callee fnctions to inform whether to inline, as inlining
under an already-high register pressure could potentially cause spills and negate the performance
benefit of eliminating function call overhead.

19

7.2 Global Constant Propagation

Using global constant propagation as opposed to local constant propagation could also help speed
up julia.l4. The julia function contains a loop that has no effect on the return value, but in
order to remove it with ADCE, we would need to know that DIM/2 is nonzero. As we can only
propagate within blocks, we do not know that DIM is deterministically 144, so ADCE cannot remove
the instruction as it may cause side effects.

One wya to implement global constant propagation under our local optimization framework is
to add an additional move at the top of any basic block guarded by an equality condition. For
example, in while generating the if-statement if (x == 1) { ... }, we could insert an additional
assignment statement x<-1 at the top of the loop contents. In the best case, this gives our local
optimizations additional information to perform constant and copy propagation as they do now.
In the worst case, this assignment statement has no effect and is removed later by ADCE.

7.3 Register Allocation and Loop Analysis

Loop analysis would give us better heuristics for what variables to spill during register allocation.
Our current heuristic only takes into account the number of appearances in the code and not
loops, which may cause inner loop variables to be spilled and reloaded many times. Especially on
ronald.14 which spills many variables, our register allocator does not have the best performance.

7.4 Tail Call Optimization and Basic Accumulation

As mentioned previously, monica.14 has functions that are close to tail call optimizable, but require
basic accumulation in order to perform this optimization. To improve leonardo.1l4, we can also
either optimize our function calls, or unroll the function and turn it into a loop.

7.5 Alias Analysis Type and Field Sensitivity

Further improvements are possible for our alias analysis algorithms. For dataflow-based alias anal-
ysis, we could make it type-sensitive and field-sensitive. As discussed previously, passing around
type information could reduce the number of possible points of origins that would need to be as-
signed to a pointer in ambiguous situations, including function calls and the stack frame. By adding
field-sensitive information, we can further distinguish between pointers. For example, consider the
following code:

struct x { int* a; int *b; };
struct x* var = alloc(struct x);
var->a = alloc(int);

alloc(int);

var->b

Our algorithm currently does not distinguish between the points of origin on lines 2 and 3, so
var->a could refer to both of these points of origin as we do not know which allocation relates to
each field. Adding field information would further increase the accuracy of alias analysis.

20

8 References

1)

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. “Compilers: Principles,
Techniques, and Tools.” Pearson Education Inc., 2006.

Adrew A. Appel. “Modern Compiler Implementation in ML.” Cambridge University Press,
1998.

Keith D. Cooper and Linda Torczon. “Engineering a Compiler.” FElsevier Science, 2004.

Fernando Magno Quintao Pereira and Jens Palsberg. “Register Allocation via Coloring of
Chordal Graphs.” APLAS, 2005.

Torbjorn Granlund and Peter L. Montgomery. “Division by Invariant Integers Using Multi-
plication.” PLDI, 1994.

21

